Boosting blood system protein complex protects against radiation toxicity

June 24, 2012

CINCINNATI - New research in Nature Medicine shows that boosting a protein pathway in the body's blood making system protects mice from otherwise fatal radiation poisoning.

Scientists in the multi-institutional study - posted online by the journal on June 24 - say their findings open the potential for new treatments against radiation toxicity during cancer treatment or environmental exposures - such as in a nuclear explosion or accident.

By identifying a target-specific intervention to protect the hematopoietic system against radiation toxicity, the study addresses a largely unmet challenge, according to the researchers.

"These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd (thrombomodulin) or aPC (activated protein C) might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation," the scientists write in their manuscript. "Recombinant human aPC has undergone extensive clinical testing in patients, and recombinant soluble human Thbd is currently being investigated for efficacy in antithrombotic therapy in humans. Our data encourage the further evaluation of these proteins for their radio-mitigating activities."

The study reveals a previously unknown function of the Thbd-aPC pathway in radiation mitigation. The pathway is normally known for its ability to prevent the formation of blood clots and help the body fight infections. The researchers found the pathway helps blood cells in the bone marrow recover from injury caused by radiation exposure. They demonstrated that pharmacologic boosting of this pathway with two drugs tested for the treatment of thrombosis or infection (recombinant Thbd and aPC respectively) can be used in mice to prevent death caused by exposure to lethal doses of radiation.

In all instances of treatment with recombinant soluble Thbd or aPC, the result was accelerated recovery of hematopoietic progenitor cell activity in bone marrow and a reduction in the harmful effects of lethal total body irradiation. When treatment was with aPC, these benefits occurred even when treatment was delayed for 24 hours.

The scientists caution their study involves early laboratory research in mice, so it remains to be tested how the findings may translate to human treatment. Researchers also need to determine exactly why the protective function of the targeted Thbd-aPC protein pathway seems to work so well in mice.

Researchers noted that the protective benefits of Thbd-aPC occurred only in vivo in irradiated mouse models. The researchers reported that overexpressed Thbd in irradiated laboratory cell cultures did not offer the same protective benefits, as the cells did not survive. This indicates the protective benefits of Thbd on blood making cells in irradiated mouse models depends on the help of additional cells or molecules in the body, which the researchers are trying to identify in a follow-up study.

The study involves extensive multi-scientist collaborations that combined previously independent lines of research by groups at Cincinnati Children's Hospital Medical Center and the University of Ulm, Germany (led by Hartmut Geiger, PhD, Division of Experimental Hematology/Cancer Biology and the Department of Dermatology/Allergic Diseases); the University of Arkansas, Little Rock (led by Martin Hauer-Jensen, MD, PhD, Division of Radiation Health, the College of Pharmacy and the Central Arkansas Veterans Healthcare System); the Blood Research Institute in Milwaukee, Wis. (led by Hartmut Weiler, PhD); and The Scripps Research Institute in La Jolla, Calif. (led by John H. Griffin, PhD, Department of Molecular and Experimental Medicine).

The research team said the current study exemplifies a global shift to multi-investigator projects that allow a combination of varied expertise by scientists tackling complex problems from the perspective of their respective fields. This approach requires the willingness of investigators to share unpublished data and engage in an open collaboration. The researchers also said the study underscores the importance of continued federal funding for leading edge basic research that can benefit human health.
-end-
The study was supported by funding from The National Institutes of Health, as well as the U.S. Department of Veterans Affairs and the Edward P. Evans Foundation.

Additional co-authors on the study include Snehalata A. Pawar, Edward J. Kerschen, Kalpana J. Nattamai, Irene Hernandez, Hai-Po Liang, Jose A. Fernandez, Jose A. Cancelas, Marnie A. Ryan, Olga Kustikova, Axel Schambach, Qiang Fu, Junru Wang, Louis M. Fink, Karl-Uwe Petersen, Daohong Zhou and Christopher Baum, and the following institutions: Department of Experimental Hematology, Hannover Medical School, Hannover, Germany; the Desert Research Institute, Las Vegas, Nev.; PAION Deutschland GmbH, Aachen, Germany.

About Cincinnati Children's:

Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S. News and World Report's 2012 Best Children's Hospitals ranking. It is ranked #1 for neonatology and in the top 10 for all pediatric specialties. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health. It is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at www.cincinnatichildrens.org.

Cincinnati Children's Hospital Medical Center

Related Bone Marrow Articles from Brightsurf:

Researchers identify the mechanism behind bone marrow failure in Fanconi anaemia
Researchers at the University of Helsinki and the Dana-Farber Cancer Institute have identified the mechanism behind bone marrow failure developing in children that suffer from Fanconi anaemia.

Nanoparticles can turn off genes in bone marrow cells
Using specialized nanoparticles, MIT engineers have developed a way to turn off specific genes in cells of the bone marrow, which play an important role in producing blood cells.

How stress affects bone marrow
Researchers from Tokyo Medical and Dental University (TMDU) identified the protein CD86 as a novel marker of infection- and inflammation-induced hematopoietic responses.

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.

Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.

Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.

Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.

Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.

Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.

Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.

Read More: Bone Marrow News and Bone Marrow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.