Ghost writing the whip

June 24, 2014

WASHINGTON D.C., June 24, 2014 - "Ghost imaging" sounds like the spooky stuff of frivolous fiction, but it's an established technique for reconstructing hi-res images of objects partly obscured by clouds or smoke. Now a group of researchers at the National University of Singapore (NUS) is applying ghost imaging to secure stored or shared electronic data.

Described in the journal Applied Physics Letters, from AIP Publishing, the work establishes "marked ghost imaging" technology as a new type of multi-layer verification protocol for data storage or transmission.

By "ghosting up" data, the scientists can hide the contents of electronic communications from hackers, deconstructing it into multiple foggy files that make no sense on their own and can only be reconstructed by someone who has the right decoder key (technically called a "reference intensity sequence").

"The sender can send out a huge number of different reference intensity sequences -- only one is authentic, and others are counterfeit -- for confusing the attackers," said Wen Chen, an author who conducted the work with NUS professor Xudong Chen.

"This novel method based on ghost imaging can dramatically enhance system security, and it may be straightforward to apply it to other optical security systems," Chen added.

How the Technology Works

Information security has become one of the most important social and academic topics in recent years as massive increases in data storage have coincided with rapidly developing modern technologies for accessing that data virtually anywhere. Imaging technology has attracted more and more attention in computer security circles because of its promise to enhance the security of data storage or transmission, which is what led Chen and colleagues to develop their marked ghost imaging technology based on traditional optical ghost imaging.

Traditional ghost imaging uses digital cameras to detect light bouncing directly off of an object as well as light that does not directly bounce from the object to the detector. It allows solid images of objects to be reconstructed by shining light into a beamsplitter and separating it into two correlated beams -- one directed at the object and the other, reference arm directed at the camera lens. When these two beams are correlated, they create a silhouette image of the object.

Chen and his colleague report that although virtual computation, using software, is applied, they can do the same thing with real experiments in the future study. Their technology allows them to create highly-sparse reference intensity patterns that act as security keys and lowly-sparse intensity patterns as useful parameters for recovering the target, the information being decoded. To compress the data and confuse the attackers, the reference-arm patterns are then processed to 'rebuild' one new reference intensity sequence. This is crucial because requiring only one rebuilt intensity sequence doesn't increase the system's complexity, while allowing multiple marks to be hidden.

Future research includes analysis of the upper limit of keys that can be embedded without increasing the system's complexity and developing greater robustness of the system against attacks.
-end-
The article, "Marked ghost imaging" is authored by Wen Chen and Xudong Chen. It will be published in the journal Applied Physics Letters on June 24, 2014. After that date, it may be accessed at: http://scitation.aip.org/content/aip/journal/apl/104/25/10.1063/1.4879843

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

American Institute of Physics

Related Data Storage Articles from Brightsurf:

Reviewing multiferroics for future, low-energy data storage
Big data and exponential demands for computations are driving an unsustainable rise in global ICT energy use.

A new ultrafast control scheme of ferromagnet for energy-efficient data storage
Using a single laser pulse that did not switch the ferrimagnetic layer, researchers demonstrated a much faster and less energy consuming switching of the ferromagnet.

Multi-state data storage leaving binary behind
Electronic data is being produced at a breath-taking rate. Around ten zettabytes (ten trillion gigabytes) of data is stored in global server farms, and that's doubling every two years.

Robust high-performance data storage through magnetic anisotropy
A technologically relevant material for HAMR data memories are thin films of iron-platinum nanograins.

Energy-saving servers: Data storage 2.0
A research team of Mainz University has developed a technique that will potentially halve the energy required to write data to servers and make it easier to construct complex server architectures.

New approach to DNA data storage makes system more dynamic, scalable
Researchers have developed a fundamentally new approach to DNA data storage systems, giving users the ability to read or modify data files without destroying them and making the systems easier to scale up for practical use.

Scientists take steps to create a 'racetrack memory,' potentially enhancing data storage
A team of scientists has taken steps to create a new form of digital data storage, a ''Racetrack Memory,'' which opens the possibility to both bolster computer power and lead to the creation of smaller, faster, and more energy efficient computer memory technologies.

Discovery offers new avenue for next-generation data storage
The demands for data storage and processing have grown exponentially as the world becomes increasingly connected, emphasizing the need for new materials capable of more efficient data storage and data processing.

Magnetic whirls in future data storage devices
Magnetic (anti)skyrmions are microscopically small whirls that are found in special classes of magnetic materials.

Laser writing enables practical flat optics and data storage in glass
Femtosecond laser machining has emerged as an attractive technology enabling appications ranging from eye surgery to direct writing in the bulk of transparent materials.

Read More: Data Storage News and Data Storage Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.