Cell division discovery could optimise timing of chemotherapy and explain some cancers

June 24, 2014

Research led by the University of Warwick's Systems Biology Centre and Medical School in collaboration with groups in Nice and Rotterdam has been able to demonstrate how the cycle of cell division in mammalian cells synchronises with the body's own daily rhythm, its circadian clock.

The study not only helps to explain why people with sustained disrupted circadian rhythms can be more susceptible to cancer, it may also help establish the optimal time of day to administer chemotherapy.

In a paper entitled Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle just published in PNAS (Proceedings of the National Academy of Sciences) the researchers drew on an idea of clock synchronization first demonstrated in the 18th century when Dutch scientist Christian Huygens observed the synchronization of two pendulum clocks. The University of Warwick led research team wanted to establish if the two clocks within a mammalian cell (the gene based "clock" regulating the cycle of cell division and the separate gene based clock within the same cell that was regulated by the body's circadian) were or could be synchronized in the same way.

Past researchers had failed to measure the clock mechanism behind normal circadian rhythms in single cells. The Warwick research team solved that by using multispectral imaging of single live cells, computational methods, and mathematical modelling to track the cycles of the two clocks and were able to observe (by making copies of the key genes that fluoresce) that that they were indeed synchronized with each other.

While trying to understand why this synchronisation has not been seen before they discovered that the protocol used by circadian researchers to reset the clocks in cells so that their clocks progress in step with each other disrupted the 1:1 synchronization between the clocks and pushed them over into a new pattern in which there were 3 cell divisions every two clock periods. This ability of the clock and cell cycle to have multiple patterns of oscillatory behaviour is a surprising discovery that has not been seen before in any cellular systems.

These new findings could provide a significant clue as to why people with sustained disrupted circadian rhythms such as those doing shift work can be more susceptible to cancer. If a person's circadian rhythms are messed up that disruption will also directly impact on the timings of cell division allowing more rapid proliferation. As Professor David Rand the Director of the University of Warwick's Systems Biology Centre who led the Warwick research team said:

"Robust phase locking between the mammalian clock and the cell cycle is of primary relevance to cancer because the clock is often disrupted or turned off in cancer cells allowing faster cell division and disorganisation of the crucial anti-cancer cellular processes whose timing is regulated by the circadian clock inside each cell."

As well as providing a significant clue to a cause of cancer this research underpins a method of how to pick an optimal time of day to administer chemotherapy. Most chemotherapy drugs targets and attack cells at a particular phase of the cell division cycle. In healthy cells where the clock and cell cycle are synchronised this will be at a particular time of the day while in cancer cells that are not synchronised cell division will be occurring all round the clock. Thus one can time the therapy to avoid hitting susceptible healthy cells while still hitting the full amount of susceptible cancer cells.
-end-
The European project that provided the funding for this project was led by the oncologist Professor Francis Levi who has just moved to the University of Warwick and the Queen Elizabeth Hospital in Birmingham from France. He has pioneered basic and clinical research in the field of circadian biology and its applications to cancer. The experiments were carried out in the laboratories of Dr Franck Delaunay in Nice and Dr Bert van der Horst in Rotterdam.

Notes for Editors:

The research was funded by ERASysbio+ via the BBSRC

Contact details:

Professor David Rand - University of Warwick Systems Biology Centre
Email: d.a.rand@warwick.ac.uk
Mobile: 07941935040

Professor Francis Levi - University of Warwick and the Queen Elizabeth Hospital, Birmingham
Email: francis.levi@inserm.fr

Tom Frew - International Press Officer, University of Warwick
Email: a.t.frew@warwick.ac.uk
Phone: +44 (0) 2476 575910

University of Warwick

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.