Intervening during scar process could help cardiac patients, reviewers say

June 24, 2016

Literal heartbreak, from illness or injury, triggers the body's natural healing mechanisms. The result of such mending is often a scar. It's a patch that works, but fibrotic scar tissue replaces healthy heart muscle, a problem that has led scientists across the world to ponder ways to modify the wound-healing process for the benefit of patients.

An international team of researchers from the Virginia Tech Carilion Research Institute and the Universities of Bonn and Freiberg in Germany recently published a review paper online in Nature Reviews Drug Discovery - one of the highest ranked journals in medical research - that summarizes the potential therapeutic promise of targeting the non-muscle cells in the heart responsible for cardiac scarring. The study is now online and will appear in print in August.

"After disease or injury, the adult mammalian heart repairs by forming a scar, while other classes of vertebrates such as amphibians and fish can regenerate injured cardiac tissue," said Rob Gourdie, the director of the Virginia Tech Carilion Research Institute's Center for Heart and Regenerative Medicine and an author of the paper. "Understanding the molecular difference between scarring and regeneration might help us develop treatments for heart disease in humans."

Annually, more than 600,000 Americans are hospitalized or die from their first heart attack. Of the more than half that survive, 280,000 people will have at least one more coronary event. According the American Heart Association, the annual financial burden of heart disease is $180 billion.

"Heart disease is the leading cause of sickness and death in the developed world," Gourdie said. "The central problem in heart disease is loss of cardiac muscle and its replacement with fibrotic non-muscle tissue."

Fibroblasts, the cells responsible for connecting cardiac muscle, make up the fibrotic tissue. Fibroblasts support the walls of the heart in health, but they can thicken and scar in disease, hindering the heart's ability to contract effectively and pump blood throughout the body, including to the heart muscle itself and the brain.

"Utilizing the natural reparative processes of fibroblasts to modify properties of the forming cardiac scar is quietly emerging as an exciting therapeutic avenue," said Gourdie, who is also a professor at the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences and a professor of emergency medicine at the Virginia Tech Carilion School of Medicine.

In a related vein, some scientists are attempting to use sophisticated gene therapies to reprogram fibroblasts into different types of adult cells, such as a muscle cells, providing another path to a future way to treat heart disease.

Fibroblasts were once thought to simply be the glue holding together cardiac tissue, but now researchers are discovering the complex and active roles these cells play in maintaining the structure and operation of the heart.

In a healthy heart, fibroblasts are actually the main type of cell that forms and maintains the connective tissue. The fibroblasts secrete molecules that comprise the extracellular matrix, which acts as scaffolding for the entire heart.

"The concept that fibroblasts link together to form a cardiac sub-system of equal importance to the network of cardiac muscle cells should inform our approach to targeting or even using the connective cells in therapies for heart disease," Gourdie said.

Equally significant, Gourdie noted, is to fully understand the mechanisms underlying communication between cardiac cells. Such knowledge could lead to the development of cell-specific therapeutic delivery systems, among other critical tools to strategically reprogram cell types.

"The topic reviewed in this paper is immensely important for evolving strategies to treat diseases that are routinely viewed as hopeless, from common ailments like advanced heart failure, to rare but deadly ones like muscular dystrophy," said Eduardo Marbán, the director of Cedars-Sinai Heart Institute. Marbán, who has both a medical degree and a doctorate, was not involved in this review.

A more complete understanding of how cells communicate during and after damage may eventually lead to therapeutic applications for a wide range of diseases and disorders. It's an admirable aim, and perhaps researchers can start to make a difference for patients now.

"In the meantime, the more modest goal of modifying scar tissue for patient benefit seems to be a useful tangible objective," Gourdie said. "Perhaps we can therapeutically nudge or re-engineer the scarring process to improve clinical outcomes for people with heart disease."

Virginia Tech

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to