Nav: Home

Calibration method improves scientific research performed with smartphone cameras

June 24, 2019

WASHINGTON -- Although smartphones and other consumer cameras are increasingly used for scientific applications, it's difficult to compare and combine data from different devices. A new easy-to-use standardized method makes it possible for almost anyone to calibrate these cameras without any specialized equipment, helping amateurs, science students and professional scientists to acquire useful data with any consumer camera.

"The low cost of consumer cameras makes them ideal for projects involving large-scale deployment, autonomous monitoring or citizen science," said Olivier Burggraaff, who led the research team from Leiden University in the Netherlands who developed the calibration method. "Our standardized calibration method will make it easier for anyone to use a consumer camera to do things like measure pollution by detecting aerosol particles in the air."

In The Optical Society (OSA) journal Optics Express, the multi-institutional group of researchers report their new standardized calibration method and database, called SPECTACLE (Standardized Photographic Equipment Calibration Technique And CataLoguE), which can be used for smartphones, digital single-lens reflex cameras and cameras aboard drones. The database allows users to upload calibration data from their cameras for others to use.

"SPECTACLE includes many do-it-yourself (DIY) methods, which we found provided results comparable to professional methods that require high-end laboratory equipment," said Burggraaff.

Improving citizen science

The standardized calibration method was developed in response to a need that arose as Burggraaff and his Leiden Univ. colleagues were developing citizen science methods to measure optical water quality using a smartphone add-on called iSPEX (Spectropolarimeter for Planetary EXploration), they originally developed to measure air pollution. This add-on allows a smartphone camera to measure extra optical information such as hyperspectral and polarimetric data. SPECTACLE and iSPEX are part of MONOCLE (Multiscale Observation Networks for Optical monitoring of Coastal waters, Lakes and Estuaries), a project funded by the European Commission aimed at creating sustainable solutions for measuring optical water quality.

"To use smartphone cameras to measure water quality we need to understand them well because each manufacturer and each device has its own characteristics," said Burggraaff. "SPECTACLE brings together many existing calibration methods and applies them for the first time to consumer cameras, which will make it much easier for other developers and for us to use these cameras for scientific purposes."

Although calibration methods for consumer cameras have been developed previously, these efforts were often hampered by a lack of access to the software or available information about the devices. For example, until recently it wasn't possible to access data straight from the camera sensor-- known as so-called RAW data -- or to control many camera settings like focus or exposure. However, new versions of iOS and Android allow both.

"As part of SPECTACLE, we are developing a framework for both operating systems to make measurements using RAW data and process these on the phone, which simply was not possible a few years ago," said Burggraaff.

DIY vs. laboratory methods

To test the new calibration methods, the researchers compared them with established methods using several cameras. They found, for example, that the DIY method for measuring how the lens distributes light on the sensor, known as flat fielding, matched within 5 percent of results from the standard method that requires an integrating sphere in a laboratory setup. The DIY method involved taping paper on the camera and acquiring images of the sun or a computer screen.

They also tested the spectral response curves of a smartphone camera with the iSPEX attached and were able to achieve results within 4 percent of the professional measurement method, which requires an expensive and difficult-to-operate monochromator. The calibration of a single camera can take half a day with a monochromator, but the DIY method required simply taking a single picture of a piece of printer paper in the sun.

"We tested a number of cameras and found interesting differences and similarities between them," said Burggraaff. "For example, the cameras' responses to different wavelengths of light, known as spectral response curves, were very similar among most cameras except for a few devices that showed differences that could influence how the cameras sense and reproduce colors, even when imaging the exact same scene."

The researchers plan to apply the SPECTACLE methodology to a much larger number of cameras to fill in the database and get a broader idea of camera properties. This will be done by the researchers as well as anyone who wants to upload their calibration data into the database. They are also continuing to develop the iSPEX smartphone add-on to improve its ability to acquire water and air pollution measurements. This involves advancing its physical design and the algorithms for retrieving scientific results from its data while using the SPECTACLE methods and database to combine data from different smartphones.
-end-
For more information on MONOCLE, contact the project office at monocle@pml.ac.uk.

Paper: O. Burggraaff, N. Schmidt, J. Zamorano, K. Pauly, S. Pascual, C. Tapia, E. Spyrakos, F. Snik, "Standardized spectral and radiometric calibration of consumer cameras," Opt. Express, 27, 14, 19075-19101 (2019).

DOI: https://doi.org/10.1364/OE.27.019075 .

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society and edited by James Leger from the University of Minnesota. Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:

mediarelations@osa.org

The Optical Society

Related Data Articles:

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.
Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.
Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.
Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.
Ecologists ask: Should we be more transparent with data?
In a new Ecological Applications article, authors Stephen M. Powers and Stephanie E.
Should you share data of threatened species?
Scientists and conservationists have continually called for location data to be turned off in wildlife photos and publications to help preserve species but new research suggests there could be more to be gained by sharing a rare find, rather than obscuring it, in certain circumstances.
Futuristic data storage
The development of high-density data storage devices requires the highest possible density of elements in an array made up of individual nanomagnets.
Making data matter
The advent of 3-D printing has made it possible to take imaging data and print it into physical representations, but the process of doing so has been prohibitively time-intensive and costly.
More Data News and Data Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.