Nav: Home

Resonance-enhanced tunneling induces F+H2 reaction in interstellar clouds

June 24, 2019

Scientists from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and their collaborators investigated the mechanism of rapid reactivity of the F + H2 reaction at low temperature and found that rapid reactivity was actually induced by resonance-enhanced tunneling.

This finding explains the observation of HF in interstellar clouds, which is generated only through the F + H2 reaction. The research was published in Nature Chemistry.

Generally, a chemical reaction with an energy barrier can only happen at collision energies higher than the barrier. However, quantum tunneling at energies below the reaction barrier plays a significant role in many chemical processes, especially at low temperature.

Chemical reaction plays an important role in the evolution of interstellar clouds. In interstellar space, temperature is particularly low, thus quantum effects in reactions may play a significant role.

HF in interstellar clouds was first discovered in 1997, and recent observations have found that HF is ubiquitous in the universe. Since the F + H2 reaction, with an energy barrier of 1.8kcal/mol, is the sole source of observed HF at low temperature in interstellar clouds, how does it rapidly proceed? Even considering normal quantum tunneling, the reaction rate is too low to be observed with a reaction barrier of such height (~800K).

With improved molecular crossed beam apparatus, the scientists measured the quantum state specific backward scattering spectroscopy (QSSBSS) as a function of collision energy in the range 1 ~ 35 meV. A peak in QSSBSS was clearly observed at about 5 meV. Using detailed dynamics analysis on an accurate potential energy surfaces (PESs), they found that the peak was produced by the ground resonance state of the F+H2 to HF+H reaction. They also discovered that the oscillations at about 20 meV were produced by the first excited resonance state of the F + H2 reaction.

Further theoretical analysis indicated that if the contribution of the resonance-enhanced tunneling were removed from the reactivity, the reaction rate constant of F + H2 below 10K would be reduced more than three orders of magnitude.

Thus, the reactivity of the F + H2 reaction is almost completely derived from resonance-enhanced tunneling from the ground resonance state. With an accurate PES, the theory provides the reaction rate constant for the F + H2 reaction over a wide temperature range, which is essential to understanding interstellar chemistry.
-end-


Chinese Academy of Sciences Headquarters

Related Quantum Tunneling Articles:

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
A quantum of solid
Researchers in Austria use lasers to levitate and cool a glass nanoparticle into the quantum regime.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
Quantum physics: On the way to quantum networks
Physicists at Ludwig-Maximilians-Universitaet (LMU) in Munich, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km -- thus setting a new record.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Chemists observe 'spooky' quantum tunneling
Chemists at MIT and in South Korea have demonstrated characteristics of a phenomenon called quantum tunneling by using a very large electric field to alter the ability of ammonia molecules to switch between the normal and inverted states.
Science: Sensing magnetism in atomic resolution with just a scanning tunneling microscope
Scientists from the University of Strasbourg, France, in close collaboration with colleagues from the research centers in San Sebastián, Spain, and Jülich, Germany, have achieved a breakthrough in detecting the magnetic moments of nanoscale structures.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
More Quantum Tunneling News and Quantum Tunneling Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.