Resonance-enhanced tunneling induces F+H2 reaction in interstellar clouds

June 24, 2019

Scientists from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and their collaborators investigated the mechanism of rapid reactivity of the F + H2 reaction at low temperature and found that rapid reactivity was actually induced by resonance-enhanced tunneling.

This finding explains the observation of HF in interstellar clouds, which is generated only through the F + H2 reaction. The research was published in Nature Chemistry.

Generally, a chemical reaction with an energy barrier can only happen at collision energies higher than the barrier. However, quantum tunneling at energies below the reaction barrier plays a significant role in many chemical processes, especially at low temperature.

Chemical reaction plays an important role in the evolution of interstellar clouds. In interstellar space, temperature is particularly low, thus quantum effects in reactions may play a significant role.

HF in interstellar clouds was first discovered in 1997, and recent observations have found that HF is ubiquitous in the universe. Since the F + H2 reaction, with an energy barrier of 1.8kcal/mol, is the sole source of observed HF at low temperature in interstellar clouds, how does it rapidly proceed? Even considering normal quantum tunneling, the reaction rate is too low to be observed with a reaction barrier of such height (~800K).

With improved molecular crossed beam apparatus, the scientists measured the quantum state specific backward scattering spectroscopy (QSSBSS) as a function of collision energy in the range 1 ~ 35 meV. A peak in QSSBSS was clearly observed at about 5 meV. Using detailed dynamics analysis on an accurate potential energy surfaces (PESs), they found that the peak was produced by the ground resonance state of the F+H2 to HF+H reaction. They also discovered that the oscillations at about 20 meV were produced by the first excited resonance state of the F + H2 reaction.

Further theoretical analysis indicated that if the contribution of the resonance-enhanced tunneling were removed from the reactivity, the reaction rate constant of F + H2 below 10K would be reduced more than three orders of magnitude.

Thus, the reactivity of the F + H2 reaction is almost completely derived from resonance-enhanced tunneling from the ground resonance state. With an accurate PES, the theory provides the reaction rate constant for the F + H2 reaction over a wide temperature range, which is essential to understanding interstellar chemistry.
-end-


Chinese Academy of Sciences Headquarters

Related Quantum Tunneling Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

Read More: Quantum Tunneling News and Quantum Tunneling Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.