Nav: Home

Certain cells secrete a substance in the brain that protects neurons, USC study finds

June 24, 2019

USC researchers have discovered a secret sauce in the brain's vascular system that preserves the neurons needed to keep dementia and other diseases at bay.

The finding, in a mouse model of the human brain, focuses on specific cells called pericytes and reveals that they play a previously unknown role in brain health. Pericytes secrete a substance that keeps neurons alive, even in the presence of leaky blood vessels that foul brain matter and result in cognitive decline.

The study, which appears today in Nature Neuroscience, helps explain the cascade of problems that lead to neurodegeneration after stroke or traumatic brain injury, as well as in diseases like Alzheimer's and Parkinson's -- and suggests a potential strategy for therapy.

"What this paper shows is if you lose these vascular cells, you start losing neurons. The link with neurodegeneration was really not that clear before," said senior author Berislav Zlokovic, director of the Zilkha Neurogenetic Institute at the Keck School of Medicine of USC.

The discovery comes at a time when scientists are beginning to understand Alzheimer's disease as the result of multiple processes that begin long before memory loss sets in. Many researchers are shifting their focus from the amyloid plaques that accumulate in the brain later in life toward other targets earlier in the timeline.

Zlokovic, for example, studies the layers of cells that make up blood vessels in the brain. His previous research shows that the more permeable, or leaky, a person's brain capillaries, the more cognitive disability they have.

For this new experiment in mice, Zlokovic zeroed in on pericytes in the brain's blood vessels. Pericytes help regulate blood flow and keep blood vessel walls sealed tight. When researchers artificially removed pericytes, they saw rapid degeneration of the blood-brain barrier, a slowdown of blood flow and the loss of brain cells.

To further understand the role of pericytes, the scientists infused mice with a protein, or growth factor, secreted by pericytes in the brain and not found elsewhere in the body. They found that, even with pericyte cells artificially removed, the growth factor protected neurons and the brain cells didn't die. The results persisted even with constricted blood flow.

Because these pericytes are implicated in many diseases -- including Huntington's, Parkinson's, stroke, brain trauma and amyotrophic lateral sclerosis -- the research offers intriguing possibilities for further investigation.

"This opens up an entirely new view of the possible pathogenesis of Alzheimer's disease," Zlokovic said.
-end-
In addition to Zlokovic, other authors -- all from the Keck School of Medicine -- include senior co-author Zhen Zhao; first co-authors Angeliki Nikolakopoulou, Axel Montagne, Kassandra Kisler and Zhonghua Dai; and Yaoming Wang, Mikko Huuskonen, Abhay Sagare, Divna Lazic, Melanie D. Sweeney, Pan Kong, Min Wang, Nelly Chuqui Owens, Erica Lawson and Xiaochun Xie.

The study was supported with grants from the National Institutes of Health (R01AG039452, R01NS100459, R01AG023084, R01NS090904 and R01NS034467) and the Foundation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease.

University of Southern California

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...