Nav: Home

Targeting individual atoms

June 24, 2019

Nuclear magnetic resonance spectroscopy - NMR spectroscopy for short - is one of the most important methods of physicochemical analysis. It can be used to precisely determine molecular structures and dynamics. The importance of this method is also evidenced by the recognition of ETH Zurich's two latest Nobel laureates, Richard Ernst and Kurt Wüthrich, for their contributions to refining the method.

The technique is based on nuclear magnetic resonance, which takes advantage of the fact that certain atomic nuclei interact with a magnetic field. A key factor here is the nuclear spin, which can be compared with the spinning of a child's top. Similar to a top that begins to wobble - experts call this precession - nuclear spins that are exposed to a magnetic field begin to precess. This generates an electromagnetic signal that can be measured using an induction coil.

Higher resolution

A team of researchers led by Christian Degen, Professor of Solid-State Physics at ETH Zurich, has developed a new approach, making it possible to directly track the precession of single nuclear spins. In comparison: conventional NMR measurements usually require at least 1012 to 1018 atomic nuclei in order to register a measurement signal.

In their project, the ETH researchers analysed the behaviour of carbon-13 atoms in diamonds. Rather than using conventional methods to measure the precession of the carbon nucleus, they used the spin of an adjacent electron in an N-V centre - an imperfection in the diamond's crystal lattice - as a sensor. Kristian Cujia, a doctoral student in Degen's group, summarises the principle thus: "We use a second quantum system to study the behaviour of the first quantum system. In this way, we created a very sensitive way of measurement."

Potential for future applications

Quantum systems are hard to pin down, as any measurement will also influence the system being observed. Therefore, the researchers were unable to track the precession continuously; its movement would have been changed too drastically. To solve this problem, they developed a special measurement method to capture the spin of the carbon atom through a series of weak measurements in quick succession. As a result, they were able to keep the influence of their observation so small as to not influence the system measurably, leaving the original circular motion perceptible.

"Our method paves the way for remarkable advances in NMR technology," Degen explains. "This potentially enables us to directly record the spectra of individual molecules and analyse structures at the atomic level." As a first example, the physicists identified the three-dimensional position of the carbon nuclei in the diamond lattice with atomic resolution. The physicists see huge potential in this development. Such detailed NMR measurements could lead to completely new insights in many areas, as has already been the case with conventional NMR spectroscopy in recent decades."
-end-
This work was carried out in the framework of the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT). [http://www.nccr-qsit.ethz.ch/]

Reference

Cujia KS, Boss JM, Herb K, Zopes J, Degen CL: Tracking the precession of single nuclear spins by weak measurements. Nature, 24 June 2019, doi: 10.1038/s41586-019-1334-9 [http://dx.doi.org]

ETH Zurich

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...