Nav: Home

Understanding brain activity when you name what you see

June 24, 2019

You see an object, you think of its name and then you say it. This apparently simple activity engages a set of brain regions that must interact with each other to produce the behavior quickly and accurately. A report published in eNeuro shows that a reliable sequence of neural interactions occurs in the human brain that corresponds to the visual processing stage, the language state when we think of the name, and finally the articulation state when we say the name. The study reveals that the neural processing does not involve just a sequence of different brain regions, but instead it engages a sequence of changing interactions between those brain regions.

"In this study, we worked with patients with epilepsy whose brain activity was being recorded with electrodes to find where their seizures started. While the electrodes were in place, we showed the patients pictures and asked them to name them while we recorded their brain activity," said co-corresponding author Dr. Xaq Pitkow, assistant professor of neuroscience and McNair Scholar at Baylor College of Medicine and assistant professor of electrical and computer engineering at Rice University.

"We then analyzed the data we recorded and derived a new level of understanding of how the brain network comes up with the right word and enables us to say that word," said Dr. Nitin Tandon, professor in the Vivian L. Smith Department of Neurosurgery at McGovern Medical School at The University of Texas Health Science Center at Houston.

The researchers' findings support the view that when a person names a picture, the different behavioral stages - looking at the image, thinking of the name and saying it - consistently correspond to dynamic interactions within neural networks.

"Before our findings, the typical view was that separate brain areas would be activated in sequence," Pitkow said. "But we used more complex statistical methods and fast measurement methods, and found more interesting brain dynamics."

"This methodological advance provides a template by which to assess other complex neural processes, as well as to explain disorders of language production," Tandon said.
-end-
Aram Giahi Saravani of Baylor College of Medicine and Kiefer J. Forseth of UTHealth also are authors of this work.

Financial support for this study was provided by the National Institute on Deafness and Other Communication Disorders (R01DC014589), the National Institute of Neurological Disorders and Stroke (U01NS098981), the National Science Foundation Awards 1533664 and IOS-1552868, and the McNair Foundation.

Baylor College of Medicine

Related Brain Activity Articles:

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.
Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.
Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.
Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.
Your brain activity can be used to measure how well you understand a concept
As students learn a new concept, measuring how well they grasp it has often depended on traditional paper and pencil tests.
Altered brain activity in antisocial teenagers
Teenage girls with problematic social behavior display reduced brain activity and weaker connectivity between the brain regions implicated in emotion regulation.
Gender impacts brain activity in alcoholics
Compared to alcoholic women, alcoholic men have more diminished brain activity in areas responsible for emotional processing (limbic regions including the amygdala and hippocampus), as well as memory and social processing (cortical regions including the superior frontal and supramarginal regions) among other functions.
Light, physical activity reduces brain aging
Incremental physical activity, even at light intensity, is associated with larger brain volume and healthy brain aging.
Measuring brain activity in milliseconds possible through new research
Researchers from King's College London, Harvard and INSERM-Paris have discovered a new way to measure brain function in milliseconds using magnetic resonance elastography (MRE).
Autism: Brain activity as a biomarker
Researchers from Jülich, Switzerland, France, the Netherlands, and the UK have discovered specific activity patterns in the brains of people with autism.
More Brain Activity News and Brain Activity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.