Tapping into the way cells communicate

June 24, 2019

A new technology discovered by UConn School of Dental Medicine researchers records cellular communication in real time - providing a closer look into the dynamics of cell secretion and a greater understanding of how cells repair tissue.

In a study published today in the Proceedings of the National Academy of Sciences, Kshitiz Gupta, an assistant professor (who goes by just his first name), and Yashir Suhail, a postdoctoral fellow, in the Dental School's Department of Biomedical Engineering, unlocked a breakthrough technology platform.

Now for the first time, scientists can record cells communicating in real time, opening the floodgates for new developments in cell therapy and other areas within cell biology.

Cells - like humans - are in constant communication with each other. Whereas humans exchange words, cells deliver and receive messages through secreting proteins and changing their behavior accordingly. When we listen to humans speak to each other, we can understand how words are placed into sentences and how the conversation moves back and forth. When it comes to recording communication between cells, however, the key characteristics of the conversation have been largely unknown until now.

Communication between cells is necessary to maintain most functions in the body and can also help the body properly respond to an external cue - such as an ailment or injury. Current technology only allows broad snapshots of these protein secretions.

"This is akin to detecting what words were spoken in a sentence, but not really knowing their placement, the inflection, and tone of the message," says Kshitiz. Prior to the current findings, he adds, understanding of the language of communication between cells has been very limited, and did not capture the complexity of messaging involved.

Using a combination of microfluidics and computer modeling, researchers created a platform to record cell messages in depth, uncovering the precise ways in which the words and messages are arranged in these intercellular conversations.

In the study, which was funded by the American Heart Association and the National Cancer Institute, Kshitiz and his team looked at stem cells from bone marrow that can be used to treat myocardial infarction, commonly known as a heart attack. Using the platform, the researchers recorded the proteins that were secreted by these stem cells, and how these secretions changed with time.

The information was used to create a protein cocktail that led to a second discovery - the possibility of aiding an injury without the use of stem cells. Since the researchers recorded in depth the conversations between the stem cells, they were able to copy the stem cells' exact behavior.

Stem cells - the researchers witnessed - are flexible enough to change their behavior depending on the injury present. These cells only act as "Good Samaritans," the researchers discovered, when they see injured tissue.

This information created a way to make a "cell-less" therapy by copying what stem cells do when they see a tissue injury and creating a new protein cocktail that aided in repairing cardiac tissue. The discovery of cell-less therapy can potentially reduce many complications associated with stem cell transplantation in the future.

"The findings solve a fundamental problem afflicting systems biology: measuring how cells communicate with each other," says Suhail. "The platform technology will open new lines of inquiry into research, by providing a unique way to detect how cells talk to each other at a deeper level than what is possible today."
-end-
UConn's researchers collaborated on the study with Andre Levchenko and Onur Kilic, Yale University; David D. Ellison and Laura Woo, The Johns Hopkins School of Medicine; Junaid Afzal, University of California, San Francisco; and Jeffrey Spees, University of Vermont.

University of Connecticut

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.