Molecular simulations show how drugs block key receptors

June 24, 2020

Many pharmaceuticals work by targeting what are known as "G-protein-coupled receptors". In a new study, scientists from Uppsala University describe how they have been able to predict how special molecules that can be used in new immunotherapy against cancer bind to these receptors. The researchers' calculation methods, presented in the journal Angewandte Chemie are a vital contribution to future structure-based drug design.

G-protein-coupled receptors (GPCRs) are among the protein target groups of the greatest importance for drug development. These receptors react to, for example, light, flavours, smells, adrenaline, histamine, dopamine and a long list of other molecules by transmitting further biochemical signals inside cells. The researchers who carried out the survey of GPCRs were rewarded with the Nobel Prize in Chemistry in 2012.

Today, roughly 30 per cent of all drugs on the market have GPCRs as their target proteins. Some drug molecules, such as morphine, activate the receptors (agonists) while others, such as beta blockers, inactivate them (antagonists).

One important GPCR is the adenosine A2A receptor. Its antagonists can be used in new immunotherapy against cancer. Jointly with the biopharmaceutical company Sosei-Heptares, the researchers Willem Jespers, Johan Åqvist and Hugo Gutierrez-de-Terán of Uppsala University have succeeded in showing how a series of A2A antagonists bind to the receptor and inactivate it.

With molecular dynamic simulations and calculation of binding energies, it became possible to predict how molecules from the pharmaceutical company would bind to the receptors and how strongly they do so. Thereafter, new antagonists were designed, and synthesized by chemists from Santiago de Compostela University, Spain. Three-dimensional structures of the complexes that form between these molecules and the receptor were then determined experimentally with X-ray crystallography. Computer calculations proved capable of predicting both the structure and the binding strength in the complexes with high precision.

"This is a solid step forward, and we managed to predict with great precision how this family of molecules bind the A2A receptor. Our calculation methods are now having a major breakthrough in structure-based drug design," says Hugo Gutierrez-de-Terán, who headed the Uppsala group's project.

Uppsala University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to