Nav: Home

Artificial intelligence classifies colorectal cancer using IR imaging

June 24, 2020

A research team from the Prodi Centre for Protein Diagnostics at Ruhr-Universität Bochum (RUB) has used infrared (IR) microscopes based on quantum cascade lasers to classify tissue samples of colorectal cancer from routine clinical operations in a marker-free and automated way. Artificial intelligence enabled the researchers to differentiate between different tumour types with great accuracy within approximately 30 minutes. Based on the classification, doctors can predict which course the disease will take and, consequently, choose the appropriate therapy. The team published their report in the journal Scientific Reports of 23 June 2020.

Microsatellite status facilitates prognosis

A distinction is made between microsatellite stable (MSS) and microsatellite instable (MSI) tumours in colon and other cancers. Microsatellites are usually functionless, short DNA sequences that are frequently repeated. Patients with MSI tumours have a significantly higher survival rate. This is due to a mutation rate of cancer cells that is about 1,000 times higher, which makes their growth less successful. Moreover, innovative immunotherapy is more successful in patients with MSI tumours. "It is therefore important for the prognosis and the therapy decision to know what kind of tumour we are dealing with," says Professor Anke Reinacher-Schick, Head of the Department of Haematology and Oncology at the RUB clinic St. Josef Hospital. To date, differential diagnosis has been carried out by immunohistochemical staining of tissue samples with subsequent complex genetic analysis.

Fast and reliable measurement

The potential of IR imaging as a diagnostic tool for the classification of tissue, the so-called label-free digital pathology, had already been demonstrated in earlier studies by the group headed by Professor Klaus Gerwert from the RUB Department of Biophysics. The method recognises cancer tissue without prior staining or other marking and, consequently, also works automatically with the aid of artificial intelligence. Unlike the conventional differential diagnosis of microsatellite status, which takes about one day, the new method requires only about half an hour.

The protein research team has significantly improved the method by optimising it for the detection of a molecular change in the tissue. Previously, the tissue could be only morphologically visualised. "This is a big step that shows that IR imaging can become a promising method in future diagnostics and therapy prediction," says Klaus Gerwert.

Encouraging feasibility study

In collaboration with the Institute of Pathology at RUB headed by Professor Andrea Tannapfel and the Department of Haematology and Oncology at the RUB St. Josef Hospital, the research team conducted a feasibility study with 100 patients. It showed a sensitivity of 100 per cent and a specificity of 93 per cent: all MSI tumours were correctly classified with the new method, only a few samples were falsely identified as MSI tumours. An expanded clinical trial is now starting, which will be carried out on samples from the Colopredict Plus 2.0 registry study. Initiated by Andrea Tannapfel and Anke Reinacher-Schick, the registry study allows the validation of the results from the published work. "The methodology is also of great interest to us, because very little sample material is used, which can be a decisive advantage in today's diagnostics with an increasing number of applicable techniques," explains Andrea Tannapfel.

Another step towards personalised healthcare

In future, the method is to be introduced into the clinical workflow to assess its potential for precision oncology. "Following an increasingly targeted therapy of oncological diseases, it is very important to provide rapid and precise diagnostics," concludes Anke Reinacher-Schick.
-end-
Funding

The study was carried out at the Prodi Research Centre for Protein Diagnostics (funding code 111.08.03.05-133974) and formerly the Pure Consortium (funding code: 233-1.08.03.03-031-68079), funded by the Ministry of Culture and Science of the State of North Rhine-Westphalia.

Original publication

Angela Kallenbach-Thieltges, Frederik Großerueschkamp, Hendrik Jütte, Claus Kuepper, Anke Reinacher-Schick, Andrea Tannapfel, Klaus Gerwert: Label-free, automated classification of microsatellite status in colorectal cancer by infrared imaging, in: Scientific Reports, 2020, DOI: 10.1038/s41598-020-67052-z

Press contact

Prof. Dr. Klaus Gerwert
Centre for Protein Diagnostics (Prodi)
Ruhr-Universität Bochum
Phone: +49 234 32 18035
Email: klaus.gerwert@rub.de

Ruhr-University Bochum

Related Colorectal Cancer Articles:

Colorectal cancer treatment: the winning combinations
Chemotherapy has distressing side effects for patients and increases the risk of developing resistance to the treatment.
A new model to predict survival in colorectal cancer
This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy.
Roadmap to reducing colorectal cancer deaths
The American Gastroenterological Association has outlined a strategy to increase the number of people screened via tests that are more convenient, accurate and less expensive and tailored to people's individual cancer risks.
Study provides new insight on colorectal cancer growth
A new study by researchers at the University of Kentucky identifies a novel function of the enzyme spermine synthase to facilitate colorectal cancer growth.
Researchers ID target for colorectal cancer immunotherapy
Researchers at the Indiana University Melvin and Bren Simon Comprehensive Cancer Center have identified a target for colorectal cancer immunotherapy.
Colorectal cancer partner-in-crime identified
A protein that helps colorectal cancer cells spread to other parts of the body could be an effective treatment target.
Cancer cell reversion may offer a new approach to colorectal cancer treatment
A novel approach to reverse the progression of healthy cells to malignant ones may offer a more effective way to eradicate colorectal cancer cells with far fewer side effects, according to a KAIST research team based in South Korea.
A novel pathway to target colorectal cancer
Survival rates for patients with late-stage colorectal cancer are dismal, and new therapeutic strategies are needed to improve outcomes.
Colorectal cancer rates in Canada
The incidence of colorectal cancer among younger adults increased in recent years in this analysis of data from Canadian national cancer registries that included about 688,000 new colorectal cancers diagnosed over more than 40 years.
Cancer drugs promote stem cell properties of colorectal cancer
Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Mannheim University Medical Center have now discovered that a certain group of cancer drugs (MEK Inhibitors) activates the cancer-promoting Wnt signalling pathway in colorectal cancer cells.
More Colorectal Cancer News and Colorectal Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.