Subtypes in Alzheimer's disease may be linked to tau protein modifications

June 24, 2020

A new study reveals a possible biological reason that Alzheimer's Disease (AD) progresses at different rates in different patients.

The study, which was led by Massachusetts General Hospital researchers, focused on tau, a protein found in the neurofibrillary tangles in the brain that are a well-known sign of AD.

Tau can undergo a variety of modifications during the course of the disease including phosphorylations. Researchers found that the presence of different forms of phosphorylated tau could explain why the disease has variable effects.

The study's lead author is Simon Dujardin, PhD, post-doctoral research fellow at Mass General.

Physicians have long known that, from patient to patient, there can be substantial variation in the clinical presentation of Alzheimer's Disease, including age of onset, rate of memory decline and other clinical measures.

Also, higher levels of pathological tau in the brain are associated with more severe disease. However, there are few clues as to what causes this variation between patients.

This team studied samples from 32 patients who were diagnosed with what is considered "typical AD" while living, and that diagnosis was confirmed after death.

The age at diagnosis and the rate of disease progression varied markedly among these patients.

More Details About the Study

The researchers also conducted an in-depth characterization of the molecular features of tau proteins within the brains of these patients.

This included levels of different species of tau, capacity of tau to induce aggregation (also called seeding), as well as the presence of specific post-translational modifications using biochemical, biophysical and bioactivity assays, as well as advanced mass spectrometry techniques, working with teams at Children's Hospital, Boston and Merck.

The researchers found "striking" variation in the presence of phosphorylated tau oligomers that associates with greater tau spread, and, importantly, worse disease.

Different specific modifications were associated with different degrees of severity and progression rate.

Notably, these specific molecular characteristics led to variable recognition by antibodies which are currently being considered for the therapeutic targeting of tau proteins in AD and associated diseases.

"We speculate that there are different molecular 'drivers' of Alzheimer's progression, with each patient having their own set of these," says Bradley Hyman, MD, PhD, senior author of the report and director of the Alzheimer's Disease Research Center at the Massachusetts General Institute for Neurodegenerative Disease (MIND). Hyman adds that,

"This is similar to what we see in cancer, where there are several types of lung or breast cancer, for example, and the treatment depends on the particular molecular drivers in the patient's tumor."
-end-
This was a multi-institution, cross-disciplinary collaboration between clinicians, neuroscientists and neuropathologists. The team included Judith Steen, PhD, associate professor at Harvard Medical School and Director of the Neuroproteomics Laboratory in the F. M. Kirby Neuroscience Center at Boston Children's Hospital, as well as Matthew Kennedy, PhD, of the Department of Neuroscience, Merck & Co.

About Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of over $1 billion and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. In August 2019, Mass General was named #2 in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.