MicroRNAs help control HIV life cycle

June 25, 2009

LA JOLLA, Calif., June 26, 2009 - Scientists at Burnham Institute for Medical Research (Burnham) have discovered that specific microRNAs (non-coding RNAs that interfere with gene expression) reduce HIV replication and infectivity in human T-cells. In particular, miR29 plays a key role in controlling the HIV life cycle. The study suggests that HIV may have co-opted this cellular defense mechanism to help the virus hide from the immune system and antiviral drugs. The research was published today in the journal Molecular Cell.

Tariq Rana, Ph.D., director of the Program for RNA Biology at Burnham, and colleagues, found that the microRNA miR29 suppresses translation of the HIV-1 genome by transporting the HIV mRNA to processing-bodies (P-bodies), where they are stored or destroyed. This results in a reduction of viral replication and infectivity. The study also showed that inhibition of miR29 enhances viral replication and infectivity. The scientists further demonstrated that strains of HIV-1 with mutations in the region of the genome that interact with miR29 are not inhibited by miR29.

"We think the virus may use this mechanism to modulate its own lifecycle, and we may be able to use this to our advantage in developing new drugs for HIV," said Dr. Rana. "Retroviral therapies greatly reduce viral load but cannot entirely eliminate it. This interaction between HIV and miR29 may contribute to that inability. Perhaps, by targeting miR29, we can force HIV into a more active state and improve our ability to eliminate it."

Rana's team looked at miR29 expression levels in infected and uninfected cells and found that miR29 expression was enhanced by HIV-1 infection. Blocking the activity of miR29 with interfering RNA resulted in increased replication and infectivity of the virus. The scientists tested the association of miR29 and HIV-1 by mutating both miR29 and its target region on the HIV virus. When either was altered, miR29s suppression of HIV replication and infectivity was reduced or eliminated. In addition, the team suppressed P-bodies in the cells and noted a similar effect. This suggests that HIV may use miRNAs to become dormant and escape immune response.
-end-
About Burnham Institute for Medical Research

Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top-four institutions nationally for NIH grant funding and among the top-25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation. For more information, please visit www.burnham.org.

Sanford-Burnham Prebys Medical Discovery Institute

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.