SRNL to study applicability of solar cell coatings

June 25, 2009

A project under way at the U.S. Department of Energy's Savannah River National Laboratory will study how special coatings that mimic structures found in nature can increase the usefulness of solar energy as a vital part of the nation's future energy strategy.

Working with Peng Jiang of the University of Florida, SRNL's Dr. Marie Kane is evaluating nanostructured coatings to determine the readiness of this new approach for increasing the productivity of solar cells by reducing reflection. They are studying application of the new coatings for a variety of long-term uses, including commercial and home-based solar cells, as well as harsh environments, such as those encountered by satellites in space. This work is sponsored by the DOE Office of Energy Efficiency and Renewable Energy Nanomanufacturing Program, and funded by the American Recovery and Reinvestment Act (ARRA).

"Solar energy is a tremendous force, but harnessing it for use is not always as simple as it seems," Dr. Kane says. "With most types of solar cells, you lose about one-third of the energy because the sunlight is simply reflected away." There are, however, new engineered coatings that, by mimicking the way a moth's eye absorbs light, reduce unwanted reflection from 30 percent to less than 2 percent on a typical silicon solar cell.

The SRNL project includes durability testing of these nanostructured coatings applied to various solar cell substrates to determine the feasibility of use in harsh environments, including heat, humidity, and the radiation encountered in outer space.

Nanotechnology, the understanding and control of matter at the atomic or molecular level, has the potential for major improvements in energy applications. Over the past seven years, the U.S. government has invested $8.3 billion in nanotechnology and made great strides in gaining fundamental knowledge at the nanometer scale.

An important next step in realizing the promise of nanotechnology is to improve production and manufacturing techniques for nanomaterials and nano-enabled products, many of which are "stuck at the lab scale." Projects selected by EERE's Nanomanufacturing Program will advance the state of nanomanufacturing, in part by improving the reliability of nanomaterials production.
-end-
SRNL is DOE's applied research and development national laboratory at SRS. SRNL puts science to work to support DOE and the nation in the areas of environmental management, national and homeland security, and energy security. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC. SRNS-2009-31

DOE/Savannah River National Laboratory

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.