MU scientists convert pigs' connective tissue cells into stem cells

June 25, 2009

COLUMBIA, Mo. ¬-- For years, proponents have touted the benefits of embryonic stem cell research, but the potential therapies still face hurdles. Side effects such as tumor development, a lack of an effective and long-term animal model to test new therapies, and genetic incompatibility between the host and donor cells are some of the problems faced by researchers. Now, scientists at the University of Missouri have developed the ability to take regular cells from a pig's connective tissues, known as fibroblasts, and transform them into stem cells, eliminating several of these hurdles. The new study appeared in a recent issue of the Proceedings of the National Academy of Sciences (PNAS).

"It's important to develop a good, accurate animal model to test these new therapies," said R. Michael Roberts, Curator's Professor of Animal Science and Biochemistry and a researcher in the Bond Life Sciences Center. "Cures with stem cells are not right around the corner, but the pig could be an excellent model for testing new therapies because it is so similar to humans in many ways."

In their research, Roberts; Toshihiko Ezashi, a research assistant professor of animal sciences in the College of Agriculture, Food and Natural Resources and lead author on the study; and Bhanu Telugu, a post-doctoral fellow in animal sciences; cultured fibroblasts from a fetal pig. The scientists then inserted four specific genes into the cells. These genes have the ability to "re-program" the differentiated fibroblasts so that they "believe" they are stem cells, take on many of the properties of stem cells that would normally be derived from embryos, and, like embryonic stem cells, differentiate into many, possibly all, of the more than 250 cell types found in the body of an adult pig.

Since these "induced pluripotent stem cells" were not derived from embryos and no cloning technique was used to obtain them, the approach eliminates some of the controversy that has accompanied stem cell research in the past. The next step is for Roberts and his team to remove the four genes that reprogrammed the original cells. Then the researchers will determine what needs to be done to direct the new stem cells to develop into specific cell types.

"Right now, we researchers have not answered questions concerning how to make stem cells develop into just one type of cell, such as those of liver, kidney or blood cells, rather than a mixture," Roberts said. "Now that we have been able to turn regular cells into stem cells, we need to learn how to make the right type of tissue and then test putting that new tissue back into the animal."

Roberts also noted that using the same animal for both the beginning and end of the research would eliminate any host rejection of the transplanted cells once scientists reach the point where they are putting the new tissue back into the animal. Using pigs rather than mice allows researchers to observe any long-term effects of the therapies. Because mice typically have a short life span and differ from humans more than pigs, it is less difficult to predict and/or study long-term effects using pigs, Telugu said.
-end-


University of Missouri-Columbia

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.