Skeleton formation in young corals documented for first time in multidisciplinary study

June 25, 2018

The skeleton formed by a coral plays a key role in the storage of atmospheric carbon dioxide. Previous studies have focused on the process by which adult corals produce minerals that harden existing tissues to form the skeleton, but the exact stage at which corals initiate the entire mineralization process has remained a mystery - until now.

For the first time researchers have identified the biological process of mineralization that occurs in a young coral that shifts from the plankton (swimming) stage to the "settled" stage in which it forms the skeleton from minerals that protect its colony. The discovery is important for understanding the process of coral reef formation and protecting marine creatures from the ecological damage associated with global warming. It also carries implications for new biotechnological developments using coral extractions to regenerate and reconstruct human bones.

The research was conducted by Prof. Gil Goobes, of the Department of Chemistry at Bar-Ilan University, Dr. Tali Mass, of the Leon H. Charney School of Marine Sciences at the University of Haifa, and Dr. Anat Akiva and Dr. Iddo Pinkas, of the Weizmann Institute of Science in Israel. Their findings were recently published in Nature Communications.

Corals begin their lives as plankton polyp which "swim" freely in the sea. At some point the polyp moves into a "settled" stage in which the formation of the skeleton begins. This is a process in which the polyp secretes calcium carbonate very rapidly in order to form and protect the reef colony. Proper development of polyps to the settled stage is crucial for the proper development of coral reefs.

In the current study the researchers examined the biological process that occurs throughout these two stages. For this purpose, they applied a multidisciplinary approach using advanced electron microscopy, micro-Raman spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy techniques for the first time to test the internal processes involved in skeleton production.

The researchers analyzed gene expression in both the swimming and the settled stages and saw the maturation of minerals. Through gene analysis they were able to determine that different proteins had been generated.

They found that specific genes activate glutamate-rich proteins in the first (swimming) phase, but as soon as the polyp settles and rapidly begins to secrete calcium carbonate, different genes activate aspartate-rich proteins. "Using NMR we've shown the presence of glutamate-rich proteins within the immature calcium carbonate mineral material and proteins rich in aspartate within the crystalline calcium carbonate of the skeleton, says Prof. Goobes. "In other words, we have demonstrated the relationship between genetic information and regulation activity performed by proteins. The immediate significance of these findings is in understanding the process of coral reef formation and in conserving marine creatures from the ecological damage associated with climate change."

Knowing exactly which proteins are used to accelerate mineral growth in corals has important bearings for understanding what accelerates bone growth in humans, as many of the coral skeletal proteins bear striking similarity to bone proteins in humans. Understanding the biological process is also an essential step in mimicking and adapting it to humans in terms of healing fractures or even treating deeper skeletal and spinal problems. "In this study we have discovered how skeletal growth can be regulated. This will advance the development of new, bio-technological techniques for bone transplants in the human body. Although we are a long way from understanding the mechanism by which humans form a skeleton, the present study is an important step in identifying the genes and proteins responsible for this process," conclude Dr. Mass and Prof. Goobes.
This research was supported by grants from the Israel Science Foundation, United States-Israel Binational Science Foundation, and the European Research Commission.

Bar-Ilan University

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to