A new tactic for starving tumors

June 25, 2018

A tumor's goal is simple: to grow, grow, grow, by making more cancer cells. But that often means growing so fast that the oxygen supply gets scarce, at which point cells within the tumor start to suffocate. Without oxygen, these ever-dividing cells struggle to make enough aspartate, a crucial ingredient in many cellular processes.

That's the scenario worked out by the research group of Kivanç Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at The Rockefeller University. It suggests that tumors in oxygen-starved tissues have an Achilles' heel--their already-undercut production of aspartate--that doctors could target with drugs. The researchers report their work in Nature Cell Biology this week.

Suffocation in a Petri dish

Scientists already knew that when certain tumors have outgrown their blood supply, they grow slowly under low-oxygen conditions. But it wasn't understood exactly why this happens. The oxygen molecule participates in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

To zero in on the most important reactions, Javier Garcia-Bermudez, a postdoctoral associate in Birsoy's group, mimicked oxygen deprivation in cancer cells harvested from 28 patients--including cancers from blood, stomach, breast, colon and lung--that he cultured in the lab. Many of these cells exhibited stunted growth under low-oxygen-like conditions, but others were less sensitive, and some weren't bothered at all by the treatment.

In comparing these cells' production of chemicals, or metabolites, Garcia-Bermudez noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation. Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment.

In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material.

Birsoy says he was surprised to see that so much of the oxygen-deprivation problem came down to this one amino acid. He had expected many more metabolites would depend on oxygen supply.

Hitting tumors where it hurts

The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

The same was true when he transplanted the tumors into mice, providing further support for the idea that aspartate can be a limiting factor for tumor growth when oxygen is scarce. "This is something they're really starving for," says Birsoy.

The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate. There might be several ways to prevent cancer cells from getting aspartate, Birsoy suspects, by blocking their methods to make the amino acid or take it up from their surroundings.

If he is right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas. Those parts of tumors tend to resist typical chemo and radiation, Birsoy adds.

He envisions a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

That sort of drug combo is a long ways off, however. For starters, Birsoy now plans to investigate possible drugs that would interfere with aspartate production in the lab.

Rockefeller University

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.