Nav: Home

Why life on Earth first got big

June 25, 2018

Some of the earliest complex organisms on Earth - possibly some of the earliest animals to exist - got big not to compete for food, but to spread their offspring as far as possible.

The research, led by the University of Cambridge, found that the most successful organisms living in the oceans more than half a billion years ago were the ones that were able to 'throw' their offspring the farthest, thereby colonising their surroundings. The results are reported in the journal Nature Ecology and Evolution.

Prior to the Ediacaran period, between 635 and 541 million years ago, life forms were microscopic in size, but during the Ediacaran, large, complex organisms first appeared, some of which - such as a type of organism known as rangeomorphs - grew as tall as two metres. These organisms were some of the first complex organisms on Earth, and although they look like ferns, they may have been some of the first animals to exist - although it's difficult for scientists to be entirely sure. Ediacaran organisms do not appear to have mouths, organs or means of moving, so they are thought to have absorbed nutrients from the water around them.

As Ediacaran organisms got taller, their body shapes diversified, and some developed stem-like structures to support their height.

In modern environments, such as forests, there is intense competition between organisms for resources such as light, so taller trees and plants have an obvious advantage over their shorter neighbours. "We wanted to know whether there were similar drivers for organisms during the Ediacaran period," said Dr Emily Mitchell of Cambridge's Department of Earth Sciences, the paper's lead author. "Did life on Earth get big as a result of competition?"

Mitchell and her co-author Dr Charlotte Kenchington from Memorial University of Newfoundland in Canada examined fossils from Mistaken Point in south-eastern Newfoundland, one of the richest sites of Ediacaran fossils in the world.

Earlier research hypothesised that increased size was driven by the competition for nutrients at different water depths. However, the current work shows that the Ediacaran oceans were more like an all-you-can-eat buffet.

"The oceans at the time were very rich in nutrients, so there wasn't much competition for resources, and predators did not yet exist," said Mitchell, who is a Henslow Research Fellow at Murray Edwards College. "So there must have been another reason why life forms got so big during this period."

Since Ediacaran organisms were not mobile and were preserved where they lived, it's possible to analyse whole populations from the fossil record. Using spatial analysis techniques, Mitchell and Kenchington found that there was no correlation between height and competition for food. Different types of organisms did not occupy different parts of the water column to avoid competing for resources - a process known as tiering.

"If they were competing for food, then we would expect to find that the organisms with stems were highly tiered," said Kenchington. "But we found the opposite: the organisms without stems were actually more tiered than those with stems, so the stems probably served another function."

According to the researchers, one likely function of stems would be to enable the greater dispersion of offspring, which rangeomorphs produced by expelling small propagules. The tallest organisms were surrounded by the largest clusters of offspring, suggesting that the benefit of height was not more food, but a greater chance of colonising an area.

"While taller organisms would have been in faster-flowing water, the lack of tiering within these communities shows that their height didn't give them any distinct advantages in terms of nutrient uptake," said Mitchell. "Instead, reproduction appears to have been the main reason that life on Earth got big when it did."

Despite their success, rangeomorphs and other Ediacaran organisms disappeared at the beginning of the Cambrian period about 540 million years ago, a period of rapid evolutionary development when most major animal groups first appear in the fossil record.
-end-
The research was funded by the Natural Environment Research Council, the Cambridge Philosophical Society, Murray Edwards College and Newnham College, Cambridge.

University of Cambridge

Related Fossil Record Articles:

Charred flowers and the fossil record
One of the main types of fossil used to understand the first flowering plants (angiosperms) are charred flowers.
Researchers identify evidence of oldest orchid fossil on record
A newly published study documents evidence of an orchid fossil trapped in Baltic amber that dates back some 45 million years to 55 million years ago, shattering the previous record for an orchid fossil found in Dominican amber some 20-30 million years old.
Virginia Tech researchers fill critical gap in fossil record of Chinese phytosaurs
The skeleton of a small, short-snouted reptile found in China was recently identified as the oldest known member of the phytosaurs--an extinct group of large, semi-aquatic reptiles that superficially resembled the distantly-related crocodylians and lived during the Triassic Period, approximately 250 million years ago to 200 million years ago.
The oldest fossil giant penguin
Together with colleagues from New Zealand, Senckenberg scientist Dr. Gerald Mayr described a recently discovered fossil of a giant penguin with a body length of around 150 centimeters.
Rare fossil discovery raises questions
Adult and juvenile remains of a giant rodent species (Isostylomys laurdillardi) have been uncovered by researchers, in the Río de la Plata coastal region of southern Uruguay, raising questions about classification within dinomids.
Fossil record should help guide conservation in a changing world
A group of biologists, paleobiologists, lawyers, policymakers and writers is urging conservationists not only to save species, but also to preserve a diverse array of ecosystem structures and functions in the face of rising populations and changing climate.
US record high temps could outpace record lows 15 to 1 before
If society continues to pump greenhouse gases into the atmosphere at the current rate, Americans later this century will have to endure, on average, about 15 daily maximum temperature records for every time that the mercury notches a record low, new research indicates.
A 'transitional fossil' debunked
Snakes are a very diverse group of present-day reptiles, with nearly 3,600 known species.
Study finds earliest evidence in fossil record for right-handedness
By examining striations on teeth of a Homo habilis fossil, a new discovery led by a University of Kansas researcher has found the earliest evidence for right-handedness in the fossil record dating back 1.8 million years.
Tiny fossil horses put their back into it
A new study reveals that tiny fossil ancestors of modern horses may have moved quite differently to their living counterparts.

Related Fossil Record Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".