Nav: Home

Looking to mosquitos for a way to develop painless microneedles

June 25, 2018

COLUMBUS, Ohio - A mosquito can insert a needle-like probe into your skin and draw blood for several minutes without you even noticing.

Researchers at The Ohio State University believe we can learn from nature's design of the mosquito to create a painless microneedle for medical purposes.

"Mosquitoes must be doing something right if they can pierce our skin and draw blood without causing pain," said Bharat Bhushan, Ohio Eminent Scholar and Howard D. Winbigler Professor of mechanical engineering at Ohio State.

"We can use what we have learned from mosquitoes as a starting point to create a better microneedle."

In a recently published paper, Bhushan and his colleagues reported on their detailed analysis of the mosquito's proboscis - the part that feeds on us. They identified four keys to how the insects pierce us without pain: use of a numbing agent; a serrated design to the "needle"; vibration during the piercing; and a combination of soft and hard parts on the proboscis.

"We can incorporate all of these elements into a microneedle design," Bhushan said. "Right now, needles are very simple. There hasn't been much innovation and we think there's a way to try something different."

The study was jointly led by Bhushan and Navin Kumar, a professor at the Indian Institute of Technology, Ropar. Ohio State doctoral student Dev Guerra is also a co-author. Their results are published online in the Journal of the Mechanical Behavior of Biomedical Materials.

Bhushan has long used nature as a guide to creating better products, including high-tech surfaces inspired by butterfly wings and better fake leather and waterproof coatings inspired by plants.

For this study, the researchers extensively reviewed work already done by entomologists about mosquitoes, but with a particular focus.

"We used our engineering background to characterize the parts of the mosquito to figure out how they may contribute to painless piercing," he said.

In addition, the researchers analyzed the outer cover of the proboscis, called the labrum, on female Aedes vexan mosquitoes, which is the most common mosquito in North America.

They used a technique called nanoindentation to probe how hard and stiff the tip of the labrum was in seven different places. They found that the labrum was softest near the tip and edges and became stiffer and harder farther in and up the labrum.

"This is important because a softer and more compliant tip may cause less pain when it pierces the skin because it deforms the skin less," Bhushan said.

That was one of the four keys to painless piercing, according to the researchers. They identified the other three through their analysis of existing studies.

Another key is the fact that the part of the proboscis that actually draws blood - called the fascicle - has a serrated design, like a saw. That may sound painful, but it is helpful because it makes for easier insertion. The fascicle also vibrates as it is inserted, which also helps lessen the force needed to pierce skin.

Other research has shown that mosquitoes use an insertion force that is three times lower than the lowest reported insertion force for an artificial needle, which could be the result of the vibration and serrated design, Bhushan said.

The final key to pain-free piercing is the mosquito's use of a numbing agent. Once the proboscis is inserted, the insect releases saliva, which contains a protein that lessens pain.

Based on these findings, Bhushan envisions a microneedle with two needles inside. One would immediately inject a numbing agent. The second needle would draw the blood or inject the drug. This second needle, like the fascicle of the mosquito, would have a serrated design and be most flexible and softer at the tip and sides. It would also vibrate as it is inserted.

Bhushan said that a microneedle like this would be more expensive than a traditional needle and probably could not be used for such needs as pumping intravenous fluids or drawing a large amount of blood.

But it could be useful for children or adults who are particularly phobic about the use of needles.

"We have the materials and knowledge to create a microneedle like this," Bhushan said. "The next step is to find the funding support to create and test such a device."
-end-
Contact: Bharat Bhushan, 614-292-0651; Bhushan.2@osu.edu

Written by Jeff Grabmeier, 614-292-8457; Grabmeier.1@osu.edu

Ohio State University

Related Mosquitoes Articles:

In urban Baltimore, poor neighborhoods have more mosquitoes
A new study published in the Journal of Medical Entomology reports that in Baltimore, Maryland, neighborhoods with high levels of residential abandonment are hotspots for tiger mosquitoes (Aedes albopictus).
Researchers use light to manipulate mosquitoes
Scientists at the University of Notre Dame have found that exposure to just 10 minutes of light at night suppresses biting and manipulates flight behavior in the Anopheles gambiae mosquito, the major vector for transmission of malaria in Africa.
Mosquitoes that spread Zika virus could simultaneously transmit other viruses
A new study led by Colorado State University found that Aedes aegypti, the primary mosquito that carries Zika virus, might also transmit chikungunya and dengue viruses with one bite.
Insecticide-induced leg loss does not eliminate biting in mosquitoes
Researchers at LSTM have found that mosquitoes that lose multiple legs after contact with insecticide may still be able to spread malaria and lay eggs.
New study sheds light on how mosquitoes wing it
The unique mechanisms involved in mosquito flight have been shared for the first time in a new Oxford University collaboration, which could inform future aerodynamic innovations, including tiny scale flying tech.
For female mosquitoes, two sets of odor sensors are better than one
A team of Vanderbilt biologists has found that the malaria mosquito has a second complete set of odor receptors that are specially tuned to human scents.
Common bacterium may help control disease-bearing mosquitoes
Genes from a common bacterium can be harnessed to sterilize male insects, a tool that can potentially control populations of both disease-bearing mosquitoes and agricultural pests, researchers at Yale University and Vanderbilt University report in related studies published Feb.
Scientists opened a new chapter in the study of malaria mosquitoes
In December 2016, the American Journal of Vector Ecology published two articles by Yuri Novikov, a scientist at the TSU Biological Institute devoted to the study of ecology and the distribution one of the species of malaria mosquito of the maculipennis complex and its laboratory cultivation.
Blocking hormone activity in mosquitoes could help reduce malaria spread
Disruption of hormone signaling in mosquitoes may reduce their ability to transmit the parasite that causes malaria, according to a new study published in PLOS Pathogens.
Experimental insecticide explodes mosquitoes, not honeybees
In a new study, Vanderbilt pharmacologist Jerod Denton, Ph.D., Ohio State entomologist Peter Piermarini, Ph.D., and colleagues report an experimental molecule that inhibits kidney function in mosquitoes and thus might provide a new way to control the deadliest animal on Earth.

Related Mosquitoes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.