Nav: Home

Methane-producing microbial communities found in fracking wells

June 25, 2018

COLUMBUS, Ohio - Deep in the rocky earth, in the liquid-filled cracks created by fracking, lives a community of highly interactive microbes - one that could at once have serious implications for energy companies, human health and scientists investigating the potential for life on Mars.

New research has uncovered the genetic details of microbes found in fracking wells. Not only do a wide array of bacteria and viruses thrive in these crevices created by hydraulic fracturing - they also have the power to produce methane, according to a study led by scientists at The Ohio State University and published in the journal Proceedings of the National Academy of Sciences.

That means it's possible that the tiny life forms could create more energy - and from a different source - than the fracking companies are going after in the first place.

On the other hand, the microbes found in samples from wells in Ohio, West Virginia and Pennsylvania could point to potential problems from an industry standpoint - they could prove corrosive, toxic or otherwise problematic, said the study's lead author, Kelly Wrighton, an assistant professor of microbiology at Ohio State.

"Energy companies spend a lot of money and resources trying to get rid of life in these systems," she said.

Hydraulic fracturing involves forcing open fissures in rocks deep in the earth by introducing high-pressure liquid and other components, including sand and chemicals, to extract oil or gas. Chemicals, stabilizers and water injected into the wells is undoubtedly contributing to the microbial diversity within them, the researchers said.

This was the first study to look at microbes from multiple sites in a controlled environment, and presented a rare scientific opportunity, said study co-author Michael Wilkins, an assistant professor of earth sciences at Ohio State.

"These wells are so deep and hard to sample - access to the liquid in the wells offered us a unique opportunity to understand how these microbes make a living in these briny, high-pressure, high-temperature conditions," Wilkins said.

The findings detailed in the study will inform the fracking industry, environmentalists and others. But they also have potential implications much farther from home.

"Finding life in these rocky, salty, hard-to-survive conditions would not be dissimilar to finding life on another planet," said Wrighton, who recently applied for a NASA grant relative to that pursuit.

"If we want to think about what life would be like if it could exist on Mars, this is probably a pretty good place to start."

Previous studies of fracking wells had documented the presence of some microbes and highlighted their ability to make methane, but didn't offer detailed information about how complex the communities are and how they interact, said study co-author Mikayla Borton, an environmental science graduate student in Wrighton's lab.

Those answers came from taking 40 samples from five fracking wells into the lab, manipulating the environment to "draw out" microbes that wouldn't have been identified in a basic field experiment and conducting genomic analyses.

The researchers also added a compound called glycine betaine to the samples and tracked gas release over time, confirming that, when prompted, the microbes produced methane.

"It's really important to know what these organisms can do - to grasp their genomic potential and metabolic interactions - and figure out what impact that might have on the ecosystem," Borton said.

"We found here that multiple wells have similar microorganisms, which are capable of producing methane. In theory, that could mean that stimulating the microbial community in some way could increase energy yields. That's not been done in shale yet, but it's done in other systems, including in coal mining," she said.

Furthermore, the microbes found in the fracking mines have parallels with microbes found in other protein-rich ecosystems, including the human gut and soil, Borton said.

"What we learn about these fracking microbes could have the potential to help answer questions about human health - including how plaque forms in our arteries when we have cardiovascular disease," she said.
-end-
The study was a collaboration between Ohio State and the U.S. Department of Energy's Environmental Molecular Science Laboratory and Joint Genome Institute. Other Ohio State researchers who worked on the study were Rebecca Daly, Susan Welch, Julie Sheets, David Morgan and David Cole.

The research was supported by the Department of Energy and the National Science Foundation.

CONTACT: Kelly Wrighton, 614-688-2189; kwrighton@gmail.com

Ohio State University

Related Microbes Articles:

Microbes seen controlling action of host's genes
Duke researchers have shown that microbes can control their animal hosts by manipulating the molecular machinery of their cells, triggering patterns of gene expression that consequently contribute to health and disease.
Three-way dance between herbivores, plants and microbes unveiled
What looks like a caterpillar chewing on a leaf or a beetle consuming fruit is likely a three-way battle that benefits most, if not all of the players involved, according to a Penn State entomologist.
Vitamin B12: Power broker to the microbes
In the microbial world, vitamin B12 is a hot commodity.
Gut microbes and bird's breath from the U at #SICB2017
University of Utah researchers will be among the scientists convening in New Orleans for the 2017 Annual Meeting for the Society for Integrative and Comparative Biology Jan.
Gut microbes contribute to recurrent 'yo-yo' obesity
New research in mice may in the future help dieters keep the weight off.
Digital microbes for munching yourself healthy
A research team at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg has taken an important step in modelling the complexity of the human gut's bacterial communities -- the microbiome -- on the computer.
How gut microbes help chemotherapy drugs
Two bacterial species that inhabit the human gut activate immune cells to boost the effectiveness of a commonly prescribed anticancer drug, researchers report Oct.
Soil microbes flourish with reduced tillage
Microbes improve soil quality by cycling nutrients and breaking plant residues down into soil organic matter.
Microbes help plants survive in severe drought
Plants can better tolerate drought and other stressors with the help of natural microbes, University of Washington research has found.
Mix and match microbes to make probiotics last
Scientists have tried to alter the human gut microbiota to improve health by introducing beneficial probiotic bacteria.

Related Microbes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".