Efficient, eco-friendly production of fine chemicals

June 25, 2018

The chemical industry produces not just valuable vitamins, pharmaceuticals, flavours and pesticides, but often a large amount of waste, too. This is particularly true of pharmaceutical and fine-chemical production, where the volume of desired product may be just a fraction of the volume of waste and unsaleable by-products of synthesis.

One reason for this is that many chemical reactions make use of catalysts in dissolved form, as Javier Pérez-Ramírez, Professor of Catalysis Engineering, says. Catalysts are substances that accelerate a chemical reaction. In the case of dissolved catalysts, it often takes a huge amount of effort to separate them from the solvent and from the reaction products for reuse. Catalysts in solid form avoid this problem altogether.

Pérez-Ramírez and his group have now collaborated with other European scientists and an industry partner to develop just such a solid catalyst for a major chemical reaction, as the researchers report in the magazine Nature Nanotechnology. Their catalyst is a molecular lattice composed of carbon and nitrogen atoms (graphitic carbon nitride) that features cavities of atomic dimensions into which the researchers placed palladium atoms.

Efficient catalyst for a Nobel-prizewinning reaction

By making tiny particles of this palladium-carbon-nitrogen material, the scientists were able to show that it catalyses what is known as the Suzuki reaction very efficiently. "In chemistry, forming a bond between two carbon atoms is often done using the Suzuki reaction," says Sharon Mitchell, a scientist in Pérez-Ramírez's lab. It was this reaction that won Japanese scientist Akira Suzuki and two colleagues the Nobel Prize in Chemistry 2010.

Thus far, the process in commercial scale has widely used soluble palladium catalysts. Earlier attempts to attach the soluble catalyst to a solid body always resulted in relatively unstable and inefficient catalysts.

Considerably less waste

The ETH researchers' new palladium catalyst is much more stable. For that reason, and because it does not dissolve in the reaction liquid, it can be used over a much longer time period. What's more, the catalyst is much more cost-effective and around twenty times more efficient than the catalysts used today.

"That means the new catalyst not only cuts the costs of synthesising fine chemicals, it also reduces the consumption of palladium and decreases the amount of waste," Pérez-Ramírez says. The catalyst might soon be ready for use in industry: the scientists claim that it should be easy to scale up catalyst production and use from the laboratory.

As the researchers point out, the use of graphitic carbon nitride as a solid catalyst is not limited to the Suzuki reaction. It should also be possible to populate the lattice with atoms of metals other than palladium in order to catalyse other syntheses. The ETH scientists will explore these possibilities in future research. They also plan to found a spin-off company to market this novel family of catalysts.

Chen Z, Vorobyeva E, Mitchell S, Fako E, Ortuño MA, López N, Collins SM, Midgley PA, Richard S, Vilé G, Pérez-Ramírez J: A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 25 June 2018, doi: 10.1038/s41557-018-0081-0


Modeling of the catalyzed reaction. (Video: ETH Zurich)

ETH Zurich

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.