Nav: Home

True nature of cells blamed in Alzheimer's revealed

June 25, 2018

Immune cells commonly blamed in Alzheimer's and other neurodegenerative diseases are actually precision cleaning machines protecting the central nervous system, new research from the University of Virginia School of Medicine shows.

The discovery adds nuance and complexity to our understanding of immune cells known as microglia. By appreciating the role of these cells in full, scientists are better positioned to develop new treatments and tailor medicine to individual patients' needs.

"What we're finding now is that at very acute time points, whether it's in disease or whether it's injury, the microglia are doing a lot," said researcher Geoffrey Norris, PhD. "It's important to know the role and function of these cells, especially going forward for human therapy."

Understanding Microglia

Norris and colleagues in UVA's Department of Neuroscience and its Center for Brain Immunology and Glia (BIG) developed a new model that lets them study microglia in the context of acute injury. Researchers already knew that the cells play a critical role in brain development, but their role in adulthood was much murkier, with many scientists arguing their activity was harmful. UVA's research reveals that injury to the central nervous system activates the microglia, and the cells respond with remarkable precision. "It seems that microglia are very responsive to the job at hand," Norris said. "So rather than being good or bad, what we're basically seeing is that they're doing what they need to do."

He compared the cells to a construction crew knocking down a damaged building. "If you have a crumbling building after a house fire, you usually take the building away, right? You load it up on dump trucks and take it away," he said. "That's what the microglia are doing with this debris."

The research doesn't rule out the possibility that the microglia could be too aggressive in their debris removal, or perhaps something could go wrong during removal and contribute to disease. To continue the house analogy, maybe the demolition crew is knocking down a slightly damaged kitchen rather than simply repairing it. "Whether the microglia activity is detrimental or not is really just starting to be teased out," Norris said.

Fast Acting, Deep Cleaning

UVA's new model allowed the researchers to observe as the cells swallowed up damaged material while leaving healthy cells untouched - strikes surgical in their precision. "If you look just a couple of microns away, their neighboring microglia are basically unresponsive," Norris said. "So it's a very contained area of activation, which was very interesting to us."

The researchers also noted how quickly the cells were changing and how quickly they cleared debris. Scientists working on treatments for neurological diseases may need to factor that in. Depending on the progression of a disease such as Alzheimer's or Parkinson's, "it might be that the microglia have already done a lot of work and you would need another approach," Norris said.

'A New Generation of Therapeutic Agents'

Jonathan Kipnis, PhD, chairman of UVA's Department of Neuroscience and director of the BIG Center, predicted the new understanding of microglia will have important ramifications.

"Microglia were the neglected cells of the brain for decades," Kipnis said. "The tide is changing, and we now realize how interesting and unique the biology of these cells is. This work shows the physiological response of microglia after CNS [central nervous system] injury, which is very different from their role in neurodevelopment or in chronic pathologies, such as Alzheimer's disease. Understanding microglia biology in physiology and pathology will bring us closer to development of a new generation of therapeutic agents for neurological disorders."
-end-
Findings Published

The findings have been published in the Journal of Experimental Medicine. The research team consisted of Norris, Igor Smirnov, Anthony J. Filiano, Hannah M. Shadowen, Kris R. Cody, Jeremy A. Thompson, Tajie H. Harris, Alban Gaultier, Christopher C. Overall and Kipnis. Norris obtained his PhD from UVA this spring.

The work was supported by the National Institutes of Health, grants MH096484 and NS096967.

University of Virginia Health System

Related Immune Cells Articles:

Immunology: How ancestry shapes our immune cells
A genetic variant that is particularly prevalent in people of African ancestry confers protection against malaria.
Immune cells derived from specialised progenitors
Dendritic cells are gatekeepers of Immunity. Up to now dendritic cell subtypes were thought to develop from one common progenitor.
Comprehensive atlas of immune cells in renal cancer
Researchers from the University of Zurich have individually analyzed millions of immune cells in tumor samples from patients with renal cell carcinoma.
When liver immune cells turn bad
A high-fat diet and obesity turn 'hero' virus-fighting liver immune cells 'rogue,' leading to insulin resistance, a condition that often results in type 2 diabetes, according to research published today in Science Immunology.
New role for immune cells in preventing diabetes and hypertension
Immune cells which are reduced in number by obesity could be a new target to treat diseases such as type 2 diabetes and hypertension that affect overweight people, according to a collaborative study between the University of Manchester, Lund University and the University of Salford.
Why male immune cells are from Mars and female cells are from Venus
Michigan State University researchers are the first to uncover reasons why a specific type of immune cell acts very differently in females compared to males while under stress, resulting in women being more susceptible to certain diseases.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
Opioids produce analgesia via immune cells
Opioids are the most powerful painkillers. Researchers at the Charité -- Universitätsmedizin Berlin have now found that the analgesic effects of opioids are not exclusively mediated by opioid receptors in the brain, but can also be mediated via the activation of receptors in immune cells.
Oddly shaped immune cells cause fibrosis
Scientists at the Immunology Frontier Research Center (IFReC) at Osaka University, Japan, report a new group of monocytes they call SatM.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.

Related Immune Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.