Nav: Home

New nuclear medicine technique could help tackle brain disease

June 25, 2018

PHILADELPHIA - A new molecular imaging method can monitor the success of gene therapy in all areas of the brain, potentially allowing physicians to more effectively tackle brain conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. The research was presented today at the SNMMI 2018 Annual Meeting, June 23-26 in Philadelphia.

Gene therapy for diseases of the central nervous system (CNS) is a growing field; however, progress is limited by the absence of imaging techniques that can successfully monitor delivery of the therapy. Although reporter gene systems have been a key tool in molecular imaging for a number of years, they have not allowed monitoring of all areas of the brain. A new positron emission tomography (PET) reporter gene/probe system makes it possible, for the first time, to noninvasively monitor the level and location of gene expression in all areas of the brain, giving the medical team an early indication of the likelihood of treatment success.

"It is challenging to find a reporter gene and imaging agent that can be used in all areas of the brain with a high signal-to-background ratio," said Thomas Haywood, PhD, from the department of radiology at Stanford University, Stanford, California. "18F-DASA-23 is a novel radiotracer, or reporter probe, developed in the Gambhir lab at Stanford that is capable of crossing the blood-brain barrier and targeting the pyruvate kinase M2 protein in the central nervous system with minimal endogenous expression in the brain," he explained. "This allows us to monitor reporter gene expression and ultimately therapeutic gene expression for gene therapy in all regions of the brain." The radiotracer has recently undergone first-in-human trials at Stanford for the early detection of therapeutic response in glioblastoma.

In the study, after validating the utility of pyruvate kinase M2 (PKM2) as a PET reporter gene, mice were infected with a virus containing the gene, then imaged with the 18F-DASA-23 radiotracer over a period of two months to observe the increase in PKM2 expression over time. Results, confirmed by 18F-DASA-23 uptake studies and mRNA analysis, showed a good correlation between PKM2 and the radiotracer (see figure below). Further analysis showed an increase in PKM2 expression in infected mice when compared to controls. These encouraging data suggest PKM2 has the potential to be further developed into a PET reporter gene system for the imaging of gene therapy in the central nervous system.

"Having a reporter gene/reporter probe system that allows monitoring of all areas of the brain opens the door to more accurate and less invasive imaging of the brain and of gene therapies used to tackle diseases of the brain," Haywood said.
-end-
Scientific Paper 78: Thomas Haywood, Corinne Beinat, Gayatri Gowrishankar, Chirag B. Patel, Department of Radiology, Stanford University; Israt S. Alam, Stanford University; and Sanjiv S. Gambhir, Department of Radiology, Stanford University School of Medicine, Stanford, CA. "A Novel Positron Emission Tomography Reporter Gene/Reporter Probe for the Central Nervous System," SNMMI 2018 Annual Meeting, June 23-26, 2018, Philadelphia.

Please visit the SNMMI Media Center for more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at 703-652-6773 or lcallahan@snmmi.org. 2018 SNMMI Annual Meeting abstracts can be found online at http://jnm.snmjournals.org/content/59/supplement_1. Current and past issues of The Journal of Nuclear Medicine are online at http://jnm.snmjournals.org.

Link to Abstract

ABOUT THE SOCIETY OF NUCLEAR MEDICINE AND MOLECULAR IMAGING

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 16,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings, and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine and Molecular Imaging

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...