Nav: Home

Lessons about a future warmer world using data from the past

June 25, 2018

CORVALLIS, Ore. -- Selected intervals in the past that were as warm or warmer than today can help us understand what the Earth may be like under future global warming.

A latest assessment of past warm periods, published today in Nature Geoscience by an international team of 59 scientists from 17 nations, shows that in response to the warming ecosystems and climate zones will spatially shift and on millennial time scales ice sheets will substantially shrink.

The study was an outcome of a workshop that took place in Bern, Switzerland and was coordinated by the University of Bern, the University of New South Wales in Australia, and Oregon State University.

The compiled evidence from the past suggests that even with a global warming limited to within 2 degrees Celsius above preindustrial levels, as aimed at in the Paris Agreement, climate zones and ecosystems will shift, rapid polar warming may release additional greenhouse gases, and sea-level will rise by several meters over several thousand years. These observations show that many current climate models designed to project changes within this century may underestimate longer-term changes.

Over the past 3.5 million years, several time intervals are known for being .5 to 2 degrees Celsius warmer than the so-called preindustrial temperatures of the 19th century. These intervals reveal much stronger regional warming at high latitudes than in the tropics, similar to what models predict for a 2 degrees Celsius global warming by the year 2100. Although not all these past warmings were caused by higher carbon dioxide concentrations, they are helpful to assess the regional effect of a warming of a scale comparable to that aimed at in the Paris Agreement.

Ecosystems and climate zones will generally shift poleward or to higher altitudes. In response, permafrost thaw may release additional carbon dioxide and methane to the atmosphere, driving additional warming. Past observations suggest that if warming can be limited to no more than 2 degrees Celsius as proposed by the Paris accords, the risk of catastrophic runaway greenhouse gas feedbacks is relatively low. Nevertheless, the significant amount of additional carbon dioxide released from permafrost and soils must be considered in future emission budgets.

"Accounting for the additional release of CO2 leaves even less room for error or delay as humanity seeks to lower its CO2 emissions and stabilize global climate within reasonable limits," Hubertus Fischer, of the University of Bern, said.

Even a warming of 1.5 to 2 degrees Celsius above preindustrial levels will be sufficient to trigger substantial long-term melting of ice in Greenland and Antarctica and sea-level rise of more than 6 meters that will last for thousands of years. Rates of sea-level rise higher than those of the last decades are likely.

Alan Mix of Oregon State University noted the importance of this sea-level rise, stating, "we are already beginning to see the effects of rising sea level. This rise may become unstoppable for millennia, impacting much of the world's population, infrastructure, and economic activity that is located near the shoreline."

Comparison of observations of the past with computer simulations suggests that models may underestimate long-term warming and its amplification in polar regions.

Katrin Meissner of University of New South Wales, Australia, said that, "while climate model projections seem to be trustworthy when considering relatively small changes over the next decades, it is worrisome that these models likely underestimate climate change under higher emission scenarios, such as a 'business as usual' scenario, and especially over longer time scales."

According to the researchers, this information from the past underscores the urgency of reducing carbon dioxide emissions soon to meet the Paris Agreements in this century and beyond.

The publication in Nature Geoscience is a result of the Past Global Changes integrated activity "Warmer Worlds" that uses paleoclimate evidence to assess a future warming. To this end the Warmer Worlds activity assembled about 50 renowned international researchers in April 2017 for a workshop in Bern, Switzerland funded by PAGES and the Oeschger Centre for Climate Change Research of the University of Bern. The publication is the outcome of this expert assessment.
-end-
The Warmer Worlds activity is coordinated by Fischer, Meissner and Mix. PAGES, a network funded jointly by the U.S. and Swiss National Science Foundations, is a core project of the global sustainability program Future Earth and has the goal to coordinate and promote past global change research.

Oregon State University

Related Climate Zones Articles:

Researchers from IKBFU find out how to strengthen coastal zones of Baltic Sea
Reconstruction and strengthening of coastal zones are the key issues of many industries that are oriented in the seaside tourism.
Sleep, wake, repeat: How do plants work on different time zones?
Researchers at the Earlham Institute, UK, have developed a new method to reliably measure plant circadian clocks and how different plants respond to day and night, and that these circadian rhythms change as they age.
Dead zones in circadian clocks
Circadian clocks of organisms respond to light signals during night but do not respond in daytime.
Study suggests earthquakes are triggered well beyond fluid injection zones
Using data from field experiments and computer modeling of ground faults, researchers at Tufts University have discovered that the practice of subsurface fluid injection used in 'fracking' and wastewater disposal for oil and gas exploration could cause significant, rapidly spreading earthquake activity beyond the fluid diffusion zone.
Children benefit from living near conservation zones
Children who live near protected areas designated by the International Union for Conservation of Nature (IUCN) live in wealthier and healthier households than those who live far away from the conservation zones, say Robin Naidoo and colleagues.
Hypoxic dead zones found in urban streams, not just at the coast
A Duke-led study finds that hypoxic dead zones occur in nutrient-laden urban streams, not just in coastal waters.
Houses in hurricane strike zones are built back bigger
A study of hurricane-hit areas of the United States has revealed a trend of larger homes being built to replace smaller ones in the years following a storm.
Peace, not war, responsible for deforestation in armed conflict zones
Rates of deforestation in war zones increase dramatically once peace is declared, according to a study from the University of Waterloo.
Maryland Health Enterprise Zones linked to reduced hospitalizations and costs
Maryland's Health Enterprise Zones, state-funded initiatives designed to improve health care outcomes and prevent unnecessary hospitalizations in underserved communities, were associated with large reductions in inpatient stays, according to a study by researchers at Johns Hopkins Bloomberg School of Public Health.
Strategy for 'No-Mining Zones' in the Deep Sea
An international team of researchers has developed a comprehensive set of criteria to help the International Seabed Authority (ISA) protect local biodiversity from deep-sea mining activities.
More Climate Zones News and Climate Zones Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.