Nav: Home

Genes linking Alzheimer's and Down syndrome discovered

June 25, 2018

Scientists are a step closer to understanding which genes are responsible for early onset Alzheimer's disease in people with Down syndrome, thanks to a new study led by researchers at the Francis Crick Institute and UCL along with an international group of collaborators.

The findings could pave the way for future medicines to prevent the disease in these individuals, and provide insights into the mechanisms that cause dementia in the general population.

Around 1 in 800 people are born with Down syndrome, which arises in people carrying an extra copy of chromosome 21. By the time they reach their 60s, around two thirds of those with Down syndrome will have early onset Alzheimer's.

The high rates of Alzheimer's in people with Down syndrome were previously thought to be caused by a particular gene on chromosome 21 called APP. Chromosome 21 contains 231 genes, but APP was the prime suspect because it produces amyloid precursor proteins. These are involved in generating amyloid beta proteins, which build up in the brain in Alzheimer's patients.

In this study, published in the journal Brain, researchers found that extra copies of other genes on chromosome 21 increase Alzheimer's-like brain pathology and cognitive impairments in a mouse model of Down syndrome.

Dr Frances Wiseman, Senior Research Fellow at UCL, and first author of this study, said: "We've shown for the first time that genes other than APP are playing a role in early-onset Alzheimer's disease in our model of Down Syndrome. Identifying what these genes are, and what pathways are involved in the earliest stages of neurodegeneration, could help us to one day intervene with these pathways to prevent the disease in people with Down syndrome."

The team compared mice that produce APP amyloid protein with, and without, the presence of human chromosome 21, to tease apart the contributions of APP and other genes in Alzheimer's disease.

They found that mice with an extra copy of all the genes on chromosome 21 had more signs of Alzheimer's disease than mice without. The mice with extra copies of all genes on chromosome 21 had greater levels of amyloid beta and more protein clumps or 'plaques' inside part of the brain that controls memory, and performed worse on memory tests.

The team then looked at what was causing the increased build-up of amyloid-beta and plaques in the brains of mice with extra copies of all the genes on human chromosome 21. They found that these mice produced more of a particular type of amyloid beta protein that is more prone to forming clumps.

Dr Victor Tybulewicz, Group Leader at the Francis Crick Institute and co-senior author of the paper, said: "Down syndrome has historically been very difficult to model in a mouse, because the genes that we have on chromosome 21 are spread across three different chromosomes in mice. Only after years of refining our mouse models can we study the earliest stages of Alzheimer's, and other diseases, in the context of Down syndrome."

Elizabeth Fisher, Professor of Neurogenetics at UCL, and co-senior author of the paper, added: "Although we're looking at Alzheimer's disease through the lens of Down syndrome, this international collaboration provides insight into the earliest stages of disease progression, which may be applicable to modulating Alzheimer's disease in the general population."
-end-


The Francis Crick Institute

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".