Nav: Home

Using artificial intelligence to understand volcanic eruptions from tiny ash

June 25, 2018

Scientists led by Daigo Shoji from the Earth-Life Science Institute (Tokyo Institute of Technology) have shown that an artificial intelligence program called a Convolutional Neural Network can be trained to categorize volcanic ash particle shapes. Because the shapes of volcanic particles are linked to the type of volcanic eruption, this categorization can help provide information on eruptions and aid volcanic hazard mitigation efforts.

Volcanic eruptions come in many different forms, from the explosive eruptions of Iceland's Eyjafjallajökull in 2010, which disrupted European air travel for a week, to the Hawaiian Islands' relatively tranquil May 2018 lava flows. Likewise, these eruptions have different associated threats, from ash clouds to lava. Sometimes the eruption mechanism (e.g., water and magma interaction) is not obvious, and needs to be carefully evaluated by volcanologists to determine future threats and responses. Volcanologists look closely at the ash produced by eruptions (e.g., Fig. 1), as different eruptions produce ash particles of varying shapes. But how does one look at thousands of tiny samples objectively to produce a cohesive picture of the eruption? Classification by eye is the usual method, but it is slow, subjective, and limited by the availability of experienced volcanologists. Conventional computer programs are quick to classify particles by objective parameters, like circularity, but the selection of parameters remains the task because simple shape categorized by one parameter is rarely found in nature.

Enter the Convolutional Neural Network (CNN), an artificial intelligence designed to analyze imagery. Unlike other computer programs, CNN is not limited to simple parameters like circularity, and learns organically like a human, but thousands of times faster. The program can also be shared, removing the need for dozens of trained geologists in the field. For this experiment, the program was fed images of hundreds of particles with one of four basal shapes, which are created by different eruption mechanisms (examples are shown in Fig. 2). Ash particles that are blocky when rocks are fragmented by eruptions, vesicular when lava is bubbly, elongated when particles are molten and squished, and rounded from the surface tension of fluids, like droplets of water. The experiment successfully taught the program to classify the basal shapes with a success rate of 92%, and assign probability ratios to each particle even for the uncertain shape (Fig. 3). This may allow for an additional layer of complexity to the data in the future, providing scientists better tools to determine eruption type such as whether an eruption was phreatomagmatic (like second phase of Eyjafjallajökull eruption in 2010) or magmatic (like flank eruptions of Mt. Etna).

Dr. Shoji's study has shown that CNN's can be trained to find useful, complex information about tiny particles with vast geological value. To increase the range of the CNN, more advanced magnification techniques, such as an Electron Microscopy, can add color and texture to the results. From collaboration with biologists, computer scientists, and geologists, the research team hopes to use the CNN in new ways. The microcosmic world has always been a myriad of questions, but thanks to a few scientists studying volcanoes, answers may no longer be so hard to find.
-end-
Reference

Daigo Shoji1, Rina Noguchi2,5, Shizuka Otsuki3 & Hideitsu Hino4, Classification of volcanic ash particles using a convolutional neural network and probability, Scientific Reports, DOI: 10.1038/s41598-018-26200-2

1. Earth-Life Science Institute, Tokyo Institute of Technology
2. Volcanic Fluid Research Center, School of Science, Tokyo Institute of Technology
3. Geological Survey of Japan, AIST
4. The Institute of Statistical Mathematics
5. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

*Corresponding authors email: shoji@elsi.jp

Tokyo Institute of Technology (Tokyo Tech)

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of "monotsukuri," meaning "technical ingenuity and innovation," the Tokyo Tech community strives to contribute to society through high-impact research. http://www.titech.ac.jp/english/

About Earth-Life Science Institute (ELSI)

Launched in 2012, ELSI is one of Japan's ambitious World Premiere International research centers, whose aim is to achieve progress in broadly inter-disciplinary scientific areas by inspiring the world's greatest minds to come to Japan and work on the most challenging issues as a collaborative effort. ELSI's primary aim is to address the co-origin and co-evolution of the Earth and life.

About WPI

The World Premier International Research Center Initiative (WPI) was launched in 2007 by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in a drive to build "globally visible" research centers in Japan. These institutes aim to boast a very high research standard and outstanding research environment that attracts frontline researchers from around the world to come and work in them. These centers are given a high degree of autonomy, allowing them to revolutionize conventional modes of research operation and administration in Japan.

Tokyo Institute of Technology

Related Volcanic Eruption Articles:

New study investigates the role of Tambora eruption in the 1816 'year without a summer'
A new study has estimated for the first time how the eruption of Mount Tambora changed the probability of the cold and wet European 'year without a summer' of 1816.
Researchers unveil new volcanic eruption forecasting technique
Volcanic eruptions and their ash clouds pose a significant hazard to population centers and air travel, especially those that show few to no signs of unrest beforehand.
Kilauea eruption fosters algae bloom in North Pacific Ocean
USC Dornsife and University of Hawaii researchers get a rare opportunity to study the immediate impact of lava from the Kilauea volcano on the marine environment surrounding the Hawaiian islands.
Volcano eruption at different latitudes: A switch of hemispheric monsoon rainfall change
Future volcanic eruptions located in different latitudes will impact the monsoon rainfall differently through circulation changes, which implies that the rainfall response to volcanic eruptions at different hemispheres should be considered in the design of Decadal Climate Prediction Project (DCPP) experiments and the implementation of geoengineering activities.
Iceland volcano eruption in 1783-84 did not spawn extreme heat wave
An enormous volcanic eruption on Iceland in 1783-84 did not cause an extreme summer heat wave in Europe.
Mysterious eruption came from Campi Flegrei caldera
The caldera-forming eruption of Campi Flegrei (Italy) 40,000 years ago is the largest known eruption in Europe during the last 200,000 years, but little is known about other large eruptions at the volcano prior to a more recent caldera-forming event 15,000 years ago.
2018's biggest volcanic eruption of sulfur dioxide
The Manaro Voui volcano on the island of Ambae in the nation of Vanuatu in the South Pacific Ocean made the 2018 record books.
Large volcanic eruption in Scotland may have contributed to prehistoric global warming
Around 56 million years ago, global temperatures spiked. Researchers at Uppsala University and in the UK now show that a major explosive eruption from the Red Hills on the Isle of Skye may have been a contributing factor to the massive climate disturbance.
A large volcanic eruption shook Deception Island 3,980 years ago
A large volcanic eruption shook Deception Island, in Antarctica, 3,980 years ago, and not 8,300, as it was previously thought, according to an international study published in Scientific Reports.
Napoleon's defeat at Waterloo caused in part by Indonesian volcanic eruption
Electrically charged volcanic ash short-circuited Earth's atmosphere in 1815, causing global poor weather and Napoleon's defeat, says new research.
More Volcanic Eruption News and Volcanic Eruption Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.