Nav: Home

USU geologists detail likely site of San Andreas Fault's next major quake

June 25, 2018

LOGAN, UTAH USA -- Back in 1905, the Colorado River, swollen with heavy rainfall and snowmelt, surged into a dry lake bed along California's San Andreas Fault and formed the Salton Sea. The flood waters submerged most of the small town of Salton, along with nearby tribal lands. The inundation also covered a key, seismically active stretch of the San Andreas Fault's southern tip in silt, hiding evidence of its potential volatility.

Utah State University geologist Susanne Jänecke began hypothesizing the location and geometry of the sediment-obscured fault zone more than a decade ago. After securing funding from the Southern California Earthquake Center in 2011, she, along with USU graduate student Dan Markowski and colleagues, embarked on the painstaking task of documenting the uplifted, highly folded and faulted area with geologic mapping and analysis.

The geologists' persistence revealed a nearly 15.5-mile-long, sheared zone with two, nearly parallel master faults and hundreds of smaller, rung-like cross faults. Dubbed the "Durmid Ladder" by the team, the well-organized structure could be the site of the region's next major earthquake. Jänecke, Markowski, USU colleague Jim Evans, Patricia Persaud of Louisiana State University and Miles Kenney of California's Kenney GeoScience, reported findings in the June 19, 2018, online issue of Lithosphere, a publication of the Geological Society of America.

The discovery of the Durmid Ladder reveals the southern tip of the San Andreas Fault changes fairly gradually into the ladder-like Brawley Seismic zone. The structure trends northwest, extending from the well-known main trace of the San Andreas Fault along the Salton Sea's northeastern shore, to the newly identified East Shoreline Fault Zone on the San Andreas' opposite edge.

"We now have critical evidence about the possible nucleation site of the next major earthquake on the San Andreas Fault," says Jänecke, professor in USU's Department of Geology. "That possible nucleation site was thought to be a small area near Bombay Beach, California, but our work suggests there may be an additional, longer 'fuse' south of the Durmid Ladder within the 37-mile-long Brawley Seismic zone."

Future earthquakes in that zone or near the San Andreas Fault could potentially trigger a cascade of earthquakes leading to the overdue major quake scientists expect along the southern San Andreas fault zone, she says.

"Fortunately, the northern continuation of the newly identified East Shoreline strand of the San Andreas Fault is farther away from major population centers than we first thought," Jänecke says. "The fault lies along the eastern edge of Coachella Valley. In addition, the broken rock throughout the ladder structure could damped ground-shaking associated with the next large earthquake."

On the other hand, she says the Durmid Ladder present an increase in the surface-rupture hazard in Durmid Hill and, if the Brawley Seismic Zone is involved, the next large earthquake might be slightly larger than scientists previously expected.

Among the tools Jänecke and her team used to identify the fault were high resolution aerial photography and false color imaging.

"Many months of fieldwork were critical to the research," she says. "We relied on this imagery to integrate the field study into our map of the complex ladder structure."

Geophysical imaging and drilling confirmed the northward extend and identified the tilted fault zone in the subsurface near Palm Springs.

"On the ground and to our eyes, all of the tan-colored sediment looks the same," Jänecke says. "But further analysis with digital imaging tools highlighted the slight color differences of distinctive marker units."

These markers, she says, allowed the team to recognize the hundreds of faults that displace the 3-0.2 million-year-old sedimentary rocks of the Durmid Ladder.

"The new maps and analysis revealed the ladder structure, which is a particular type of 'step-over,' where overlapping fault strands have many connecting cross faults," Jänecke says. "It's not clear now past earthquakes interacted with this structure and that makes its future behavior difficult to predict."

Until now, the main trace of the San Andreas Fault has been the only well-studied active fault this area, she says. "We need further study of the Durmid Ladder, the East Shoreline Fault and other fault zones of this area to identify the potential for surface-faulting hazards, ground sharing and cascading ruptures, to determine how to mitigate the risk posed by these important structures."
-end-


Utah State University

Related San Andreas Fault Articles:

Lessons from Parkfield help predict continued fault movements after earthquakes
A new study shows that the San Andreas Fault continued to slip gradually for six to 12 years after the 2004 magnitude 6.0 Parkfield, Calif., earthquake, raising the issue of continued damage to structures built across fault zones after damaging earthquakes.
Fault system off San Diego, Orange, Los Angeles counties could produce magnitude 7.3 quake
The Newport-Inglewood and Rose Canyon faults had been considered separate systems but a new study shows that they are actually one continuous fault system running from San Diego Bay to Seal Beach in Orange County, then on land through the Los Angeles basin.
Finding fault: USU geologist probes earthquake history of Utah's Wasatch Fault
Utah State University geologist Alexis Ault is exploring processes that cause earthquakes in Utah's Wasatch Fault down to the nano-scale.
Ventura fault could cause stronger shaking, new research finds
A new study by a team of researchers, including one from UC Riverside, found that the fault under Ventura, Calif., would likely cause stronger shaking during an earthquake and more damage than previously suspected.
Researchers find biggest exposed fault on Earth
Geologists have for the first time seen and documented the Banda Detachment fault in eastern Indonesia and worked out how it formed.
Fault curvature may control where big quakes occur
Major earthquakes -- magnitude 8.5 and stronger -- occur where faults are mostly flat, say University of Oregon and French geologists.
New fault discovered in earthquake-prone Southern California region
A swarm of nearly 200 small earthquakes that shook Southern California residents in the Salton Sea area last week raised concerns they might trigger a larger earthquake on the southern San Andreas Fault.
Better understanding post-earthquake fault movement
Preparation and good timing enabled Gareth Funning and a team of researchers to collect a unique data set following the 2014 South Napa earthquake that showed different parts of the fault, sometimes only a few kilometers apart, moved at different speeds and at different times.
Study on a novel fault diagnosis method of rolling bearing in motor
In order to diagnose the early faults of bearings, a novel method for early diagnosis of rolling bearing faults based on resonance-based sparse signal decomposition and principal component analysis was proposed in the present paper.
New analysis reveals large-scale motion around San Andreas Fault System
By carefully analyzing the data recorded by the EarthScope Plate Boundary Observatory's GPS array researchers from the University of Hawai'i at Mānoa (UHM), University of Washington and Scripps Institution of Oceanography (SIO) discovered nearly 125 mile-wide 'lobes' of uplift and subsidence -- a few millimeters of motion each year -- straddling the San Andreas Fault System.

Related San Andreas Fault Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".