Conceptual model can explain how thunderstorm clouds bunch together

June 25, 2019

Understanding how the weather and climate change is one of the most important challenges in science today. A new theoretical study from associate professor, Jan Härter, at the Niels Bohr Institute, University of Copenhagen, presents a new mechanism for the self-aggregation of storm clouds, a phenomenon, by which storm clouds bunch together in dense clusters. The researcher used methods from complexity science, and applied them to formerly established research in meteorology on the behavior of thunderstorm clouds. The study is now published in Geophysical Research Letters.

The life and death of a storm cloud

When the sun warms up the surface of the ocean, warm, humid air rises from the ocean surface, forming tall, columnar thunderstorm clouds, which reach heights of approximately 12 km and measure typically only a few kilometers across. As these clouds produce rain, some of it evaporates and cools the local area under the cloud. By this, the initial circulation of air, forming the cloud, is shut down and the cloud dissipates. If it were this simple, this should be the end of the thunderstorm cloud. However, the dense air below the cloud needs to equilibrate with less dense air surrounding it: "Cold air is denser, and it spreads away from the cloud. Gust fronts are formed which can collide with gust fronts from other clouds. As a consequence the air rises up, and new clouds are produced. This means that areas where sufficiently many clouds are, are more likely to set off additional clouds", Jan Härter explains (Illustration 1). "Areas with fewer clouds exhibit further reduction of clouds. As energy needs to enter the system, and since energy comes from the sunlight, there is a limit to how big the cloud lumps can grow - so we put a constraint into our model. The result is that cloud clusters form, with cloud-free regions in between. This is also seen in observations for the tropical ocean."

Combining theory with real world phenomena

Building models is purely theoretical, but still manages to explain a phenomenon. "It is a theoretical argument, a suggestion for a mechanism that can now be tested. Clustering of thunderstorm clouds has been observed in the real world, but still lacks a scientific explanation. If we contrast two extreme cases, where one cloud is created, it ends up shutting itself down. Then statistical mechanics says no convective self aggregation will take place. Comparing this to another model where two clouds create another one, aggregation can take place. That's basically what the theoretical model can do". Jan Härter goes on: "This type of self organization is hugely interesting and can occur in a range of systems from biology to magnetism.

Preparing for the destructive force of the weather

Tropical meteorology is, due to the strong interaction of clouds with solar irradiation there, relevant for climate change. More clustering in a future climate might affect how much the ocean warms, relative to the rate seen today. Prediction of clustering of storm clouds could affect the weather in Denmark as well, and fairly recent events in Denmark with surprise flash floods, flooded sewers and basements, and damage to infrastructure has prompted questions on the origin of such sudden floods. Deeper understanding of how clouds interact could shed new light on the occurrence of such floods.
-end-


University of Copenhagen

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.