New research shows how melting ice is affecting supplies of nutrients to the sea

June 25, 2019

The findings of a research expedition to coastal Greenland which examined, for the first time, how melting ice is affecting supplies of nutrients to the oceans has been published in the journal Progress in Oceanography.

The European Research Council-funded expedition on board the RSS Discovery took place during the summer of 2017. It was led by Dr Kate Hendry a geochemist from the University of Bristol's School of Earth Sciences.

The scientific crew spent about five weeks at sea in 2017, mostly near the western coast of Greenland, sampling waters, sediments and marine life using a range of cutting-edge technologies.

A Remotely Operated Vehicle (ROV) took high-definition, real time videos of the seafloor and collected samples of marine life, water and sediments which were then analysed by the scientists on board.

The paper highlights the importance of glacial meltwaters, combined with shelf currents and biological production, on biogeochemical cycling in these high-latitude regions over a range of timescales.

Previous work from the Bristol Glaciology Centre has shown that meltwaters released from underneath glaciers are rich in important nutrients. However, until now it's not been clear to what extent these nutrients reach the open ocean where they can 'fertilise' marine life.

Dr Hendry said: "Vigorous biological uptake in the glacial fjords keeps the surface concentration of key dissolved nutrients needed for algae, such as nitrate, phosphate and silicon, very low.

"However, sediment particles from the glaciers reach the shelf waters, albeit in a patchy way, and are then rapidly transported away from the shore.

"These particles, together with the remains of algal shells and biological material, are rapidly dissolved and cycled through shallow marine sediments. This means that the seafloor is a very important source of nutrients - especially silicon - to the overlying waters."

Future changes in the supply of these reactive, glacial sediments, as well as changes in the shelf currents that transport them, will have a profound impact on the nutrient balance and ecosystem structure in the fjords and coastal waters, and potentially even further afield.

Dr Hendry added: "This study shows how geochemical and oceanographic analyses can be used together to probe not only modern nutrient cycling in this region, but also changes in glacial meltwater discharge through time."
-end-


University of Bristol

Related Marine Life Articles from Brightsurf:

Saving marine life: Novel method quantifies the effects of plastic on marine wildlife
Scientists at Tokyo Institute of Technology together with their international collaborators developed a novel quantitative method to quantify the effects of plastic on marine animals.

Life in a nutshell: New species found in the carapace of late cretaceous marine turtle
Fossils have often been known to tell stories of immobile organisms living in the hard tissues of dead ancient marine animals.

Traces of ancient life tell story of early diversity in marine ecosystems
If you could dive down to the ocean floor nearly 540 million years ago just past the point where waves begin to break, you would find an explosion of life--scores of worm-like animals and other sea creatures tunneling complex holes and structures in the mud and sand--where before the environment had been mostly barren.

Marine energy devices likely pose minimal impacts to marine life, report shows
On World Oceans Day, an international team of marine scientists reports that the potential impact of marine renewable energy to marine life is likely small or undetectable.

Our oceans are suffering, but we can rebuild marine life
It's not too late to rescue global marine life, according to a study outlining the steps needed for marine ecosystems to recover from damage by 2050.

Landmark study concludes marine life can be rebuilt by 2050
An international study recently published in the journal Nature that was led by KAUST professors Carlos Duarte and Susana Agustí lays out the essential roadmap of actions required for the planet's marine life to recover to full abundance by 2050.

Waves and tides have bigger impact on marine life than human activity
The biggest impacts on the sea life in Swansea Bay (Wales) come from waves and tides rather than human activity, a wide-ranging new study -- encompassing over 170 species of fish and other sea life such as crabs, squid and starfish -- has revealed.

Consider marine life when implementing offshore renewable power
With countries adopting green energy practices, renewable energy now accounts for a third of the world's power.

Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.

Multifactor models reveal worse picture of climate change impact on marine life
Rising ocean temperatures have long been linked to negative impacts for marine life, but a Florida State University team has found that the long-term outlook for many marine species is much more complex -- and possibly bleaker -- than scientists previously believed.

Read More: Marine Life News and Marine Life Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.