Nav: Home

Dung beetles use wind compass when the sun is high

June 25, 2019

Researchers have shown for the first time that an animal uses different directional sensors to achieve the highest possible navigational precision in different conditions. When the sun is high, dung beetles navigate using the wind.

The discovery of the dung beetles' wind compass and how it complements the sun compass was made by an international research team comprising biologists from Sweden and South Africa.

"This is the first study that shows how an animal's biological compass can integrate different directional sensors, in this case wind and sun, in a flexible way. This enables the highest possible precision at all times", says Marie Dacke, professor of Sensory Biology at Lund University and leader of the research team.

The dung beetles cannot use the sun as a directional guide when it is cloudy, or when the sun is higher than 75 degrees above the horizon for a few hours in the middle of the day. A while later, when the sun is a little lower, they turn off the wind compass and again rely on the sun.

In the new study, the researchers investigated dung beetles both out in the field and in the laboratory. Using fans, to create wind they could select the wind direction. They changed the sun's position in the sky using a mirror.

The experiment shows that when the sun is at a low or medium elevation in the sky, the dung beetles change direction by 180 degrees if the sun's position is changed by 180 degrees. However, the dung beetles were not affected when the researchers changed the wind direction by 180 degrees when the sun was at these elevations.

When the sun was highest, the situation was reversed. The wind then showed the way, so the insects responded to a change in the wind direction of 180 degrees.

The results show that directional information can be transferred from the wind compass to the sun compass and vice versa. In this way, the dung beetles can continue on in one direction when one of the compasses becomes less reliable.

The sensors that register wind direction are on the insect's antennae.

"The insect brain is definitely not pre-programmed to always follow the same set of actions. On the contrary, we can show that such small brains work according to very dynamic principles that adapt to the conditions prevailing at a given moment", says Marie Dacke.

The researchers had previously shown that, during the night, some dung beetles navigate by the Milky Way and polarised moonlight while rolling their dung balls in a straight line. Combined with the results from the new study, they show that the insect's compass works at all times of the day or night and probably under almost any conditions.

"Now we will go on to study whether they can also use the wind at night. Another aspect we are curious about is what guides them when there is no wind and it's cloudy", comments Marie Dacke.

The aim of the research is to fully understand how very small brains handle large amounts of information in order to make a relevant decision: is it appropriate to turn left or right, or continue straight on?

Marie Dacke believes that the results will be of direct benefit within a few years, in areas like robot development and artificial intelligence (AI). Just like dung beetles, robots must take large amounts of information into consideration in order to direct their next action.

"Developments in AI are happening at breath-taking speed and part of my research is directly aimed at creating a model of how networks function to integrate information in a smart way", she concludes.
-end-


Lund University

Related Sensors Articles:

Having an eye for colors: Printable light sensors
Cameras, light barriers, and movement sensors have one thing in common: they work with light sensors that are already found in many applications.
Improving adhesives for wearable sensors
By conveniently and painlessly collecting data, wearable sensors create many new possibilities for keeping tabs on the body.
Kirigami inspires new method for wearable sensors
As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body's natural movement becomes ever more crucial.
Wearable sensors detect what's in your sweat
A team of scientists at the University of California, Berkeley, is developing wearable skin sensors that can detect what's in your sweat.
Synthetic biologists hack bacterial sensors
Synthetic biologists have hacked bacterial sensing with a plug-and-play system that could be used to mix-and-match tens of thousands of sensory inputs and genetic outputs.
Better microring sensors for optical applications
Tweaking the design of microring sensors enhances their sensitivity without adding more implementation complexity.
New cellulose-based material gives three sensors in one
Cellulose soaked in a carefully designed polymer mixture acts as a sensor to measure pressure, temperature and humidity -- at the same time!
Magnetoresistive sensors for near future innovative development
Excluding the information recording and reading technology, in the next 15-20 years, the hypersensitive sensors operating under the magnetoresistive principle will be applied in an extensive number of innovative areas.
Chemists 'print' sensors for nano-objects
Young scientists from ITMO University proposed a new type of optical nano-sensors.
Leaves are nature's most sophisticated environment sensors
The experiment was spread over four continents, from the semiarid grasslands and savannas of Australia to lush pastures in Europe and prairies in America.
More Sensors News and Sensors Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.