Nav: Home

Researchers study healthy ALS neurons as way to understand resistance to the disease

June 25, 2019

Although largely paralyzed, ALS patients can communicate through eye-tracking devices because they retain eye movement until the disease's late stages. Yet, how some motor neurons resist ALS to allow for this movement has been a mystery.

Now, scientists have developed a stem-cell-based modeling system that identifies how some neurons are resistant to ALS--a breakthrough that offers potential for battling neurodegeneration.

"Some neurons, notably the ones used for eye movement, are better at fighting ALS than are those that control other muscle groups," explains Esteban Mazzoni, a professor in New York University's Department of Biology and the senior author of the paper, which appears in the journal eLife. "These findings help elucidate the differences between neuronal types that successfully battle ALS and those that succumb to the disease."

"Having identified a potential mechanism that protects some parts of the body, we are now working on making all neurons ALS resistant," he adds. "Specifically, we are striving to identify the different mechanisms that paralyze some parts of the body and leave others fully functional."

Underlying this research are well-established differences in neuronal responses: spinal motor neurons (SpMN), which control much of our muscle movement, progressively degenerate while a subset of cranial motor neurons (CrMN), which control eye movement, maintain function until the late stages of ALS.

With this in mind, the paper's authors sought to better understand how the neurons that control eye movement survive while those that control the rest of the body's movements die.

Using stem cells from mice, the researchers developed a modeling system to generate motor neurons that were both rendered dysfunctional by and resistant to ALS. They then studied their properties in order to identify specific cellular features that could be responsible for keeping eye motor neurons alive.

Specifically, they found that CrMNs are better able to discard damaged proteins than are SpMNs. Moreover, the scientists discovered, CrMNs are better able to withstand cellular stress brought on by ALS than are SpMNs, allowing neurons that control eye movement to function normally for longer periods than those that manage other muscular activity.
-end-
The researchers included scientists from Columbia University Medical Center and Boston Children's Hospital. Other NYU co-authors were: Disi An, Shuvadeep Maity, Elizabeth Wanaselja, Christine Vogel, Dylan Iannitelli, and Ilona Yagudayeva.

The research was supported by grants from Project ALS (A13-0416), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD079682), the New York State Department of Health (DOH01-C32243GG-3450000), the March of Dimes Birth Defects Foundation (5-FY14-99), and the National Institute of Neurological Disorders and Stroke (F31 NS 095571, 103447).

DOI: 10.7554/eLife.44423

New York University

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.