Nav: Home

Researchers study healthy ALS neurons as way to understand resistance to the disease

June 25, 2019

Although largely paralyzed, ALS patients can communicate through eye-tracking devices because they retain eye movement until the disease's late stages. Yet, how some motor neurons resist ALS to allow for this movement has been a mystery.

Now, scientists have developed a stem-cell-based modeling system that identifies how some neurons are resistant to ALS--a breakthrough that offers potential for battling neurodegeneration.

"Some neurons, notably the ones used for eye movement, are better at fighting ALS than are those that control other muscle groups," explains Esteban Mazzoni, a professor in New York University's Department of Biology and the senior author of the paper, which appears in the journal eLife. "These findings help elucidate the differences between neuronal types that successfully battle ALS and those that succumb to the disease."

"Having identified a potential mechanism that protects some parts of the body, we are now working on making all neurons ALS resistant," he adds. "Specifically, we are striving to identify the different mechanisms that paralyze some parts of the body and leave others fully functional."

Underlying this research are well-established differences in neuronal responses: spinal motor neurons (SpMN), which control much of our muscle movement, progressively degenerate while a subset of cranial motor neurons (CrMN), which control eye movement, maintain function until the late stages of ALS.

With this in mind, the paper's authors sought to better understand how the neurons that control eye movement survive while those that control the rest of the body's movements die.

Using stem cells from mice, the researchers developed a modeling system to generate motor neurons that were both rendered dysfunctional by and resistant to ALS. They then studied their properties in order to identify specific cellular features that could be responsible for keeping eye motor neurons alive.

Specifically, they found that CrMNs are better able to discard damaged proteins than are SpMNs. Moreover, the scientists discovered, CrMNs are better able to withstand cellular stress brought on by ALS than are SpMNs, allowing neurons that control eye movement to function normally for longer periods than those that manage other muscular activity.
-end-
The researchers included scientists from Columbia University Medical Center and Boston Children's Hospital. Other NYU co-authors were: Disi An, Shuvadeep Maity, Elizabeth Wanaselja, Christine Vogel, Dylan Iannitelli, and Ilona Yagudayeva.

The research was supported by grants from Project ALS (A13-0416), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD079682), the New York State Department of Health (DOH01-C32243GG-3450000), the March of Dimes Birth Defects Foundation (5-FY14-99), and the National Institute of Neurological Disorders and Stroke (F31 NS 095571, 103447).

DOI: 10.7554/eLife.44423

New York University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...