How the brain helps us make good decisions -- and bad ones

June 25, 2019

A prevailing theory in neuroscience holds that people make decisions based on integrated global calculations that occur within the frontal cortex of the brain.

However, Yale researchers have found that three distinct circuits connecting to different brain regions are involved in making good decisions, bad ones and determining which of those past choices to store in memory, they report June 25 in the journal Neuron.

The study of decision-making in rats may help scientists find the roots of flawed decision-making common to mental health disorders such as addiction, the authors say.

"Specific decision-making computations are altered in individuals with mental illness," said Jane Taylor, professor of psychiatry and senior author of the study. "Our results suggest that these impairments may be linked to dysfunction within distinct neural circuits."

Researchers used a new tool to manipulate brain circuits in rats while they were making choices between actions that led to them receiving rewards or no rewards. The authors found decision-making is not confined to the orbital frontal cortex, seat of higher order thinking. Instead, brain circuits from the orbital frontal cortex connecting to deeper brain regions performed three different decision-making calculations.

"There are at least three individual processes that combine in unique ways to help us to make good decisions," said Stephanie Groman, associate research scientist of psychiatry and lead author of the research.

Groman says an analogy would be deciding on a restaurant for dinner. If restaurant A has good food, one brain circuit is activated. If the food is bad, a different circuit is activated. A third circuit records the memories of the experience, good or bad. All three are crucial to decision-making, Groman says.

For instance, without the "good choice" circuit you may not return to the restaurant with good food and without the "bad choice" circuit you might not avoid the restaurant with bad food. The third "memory" circuit is crucial in making decisions such as whether to return to the restaurant after receiving one bad meal after several good ones.

Alterations to these circuits may help explain a hallmark of addiction - why people continue to make harmful choices even after repeated negative experiences, researchers say.

The Yale researchers previously showed that some of the same brain computations were disrupted in animals that had taken methamphetamine.

"Because we used a test that is equivalent to those used in studies of human decision- making, our findings have direct relevance to humans and could aid in the search for novel treatments for substance abuse in humans," Groman said.
-end-


Yale University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.