Nav: Home

Laser light detects tumors

June 25, 2019

It can take up to four weeks before patients can be sure whether the entire tumor has been removed during cancer surgery. A time of agonizing uncertainty - in which any remaining tumor cells can already multiply again. A team of scientists from Jena has now researched a diagnostic procedure that could revolutionize the previous procedure: Using laser light, the researchers make cancerous tissue visible. This enables them to provide the surgical team with real-time information in order to reliably identify tumors and tumor margins and decide how much tissue needs to be cut away.

This is made possible by a compact microscope developed by a research team from the Leibniz Institute of Photonic Technology, Friedrich Schiller University, the University Hospital and the Fraunhofer Institute for Applied Optics and Precision Engineering in Jena. It combines three imaging techniques and uses tissue samples to generate spatially high-resolution images of the tissue structure during surgery. Software makes patterns and molecular details visible and processes them with the aid of artificial intelligence. The automated analysis is faster and promises more reliable results than the currently used frozen section diagnostics, which can only be evaluated by an experienced pathologist and still have to be confirmed afterwards.

The optical method, for which the Jena scientists were awarded the renowned Kaiser Friedrich Prize in 2018, helps to prevent weakened patients from having to undergo another operation. It thus makes a significant contribution to improving their chances of recovery. Professor Jürgen Popp, scientific director of Leibniz IPHT, who was also involved in researching the laser rapid test, predicts that the compact microscope could be in the clinic in five years' time.

This could save the German healthcare system considerable costs. "One minute in the operating room is the most expensive minute in the entire clinic," explains Professor Orlando Guntinas-Lichius, Director of the Department of Otolaryngology at the University Hospital Jena. In the case of tumors in the head and neck area, for example, cancer cells are found after almost every 10th operation.

And the Jena researchers are already thinking ahead. They are researching a solution that would enable them to use the unique properties of light to detect tumors inside the body at an early stage and remove them immediately. "To do this, we need novel methods that no longer work with rigid optics, but with flexible endoscopes," says Jürgen Popp. Technologists at Leibniz IPHT produce such fiber probes: glass fibers that are thinner than a human hair. They open the way to minimally invasive medicine that makes gentle diagnosis and healing possible. "Our vision," says Jürgen Popp, "is to use light not only to identify the tumor, but to remove it immediately. This would eliminate the need for physicians to cut with a scalpel and would enable them to ablate the tumor layer by layer using light in order to remove the tumor from the patient completely". In ten to fifteen years, the research team hopes to find a solution. Popp predicts that this would "be a giant step towards completely new tumor diagnostics and therapy".
-end-
The research work was funded by the European Union, the Federal Ministry of Education and Research, the Free State of Thuringia, the German Research Foundation, the Foundation for Technology, Innovation and Research Thuringia and the Chemical Industry Fund.

EXHIBITION STAND AT THE "LASER WORLD OF PHOTONICS"

Leibniz-IPHT will present the new device for cancer diagnosis at the exhibition stand "Photonics in the life sciences" in Hall B2.350.

Leibniz-Institute of Photonic Technology

Related Tumors Articles:

Identification of all types of germ cells tumors
Germ cell tumors were considered very heterogeneous and diverse, until recently.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
Better prognosticating for dogs with mammary tumors
For dogs with mammary tumors, deciding a course of treatment can depend on a variety of factors, some of which may seem to contradict one another.
The evolution of brain tumors
Scientists from the German Cancer Research Center found in a recent study that only three different genetic alterations drive the early development of malignant glioblastomas.
Why some brain tumors respond to immunotherapy
Fewer than 1 in 10 patients with glioblastoma -- the most common type of brain cancer -- respond to immunotherapy; a new study reveals how to detect patients who may respond.
Heating up cold tumors
A Ludwig Cancer Research study has uncovered a cellular mechanism by which melanomas that fail to respond to checkpoint blockade may be made susceptible to such immunotherapies.
Physics can show us the inside of tumors
A team of physicists from the CNRS and Université Claude Bernard Lyon 1 has demonstrated the potential, for oncology, of an imaging technique based only on the physical properties of tumors.
Tumors backfire on chemotherapy
Chemotherapy is an effective treatment for breast cancer, yet some patients develop metastasis in spite of it.
A new way to cut the power of tumors
Instead of tackling tumors head-on, a team of researchers from the University of Geneva and the Amsterdam UMC, location VUmc chose to regulate their vascularization by intervening with cellular receptor overexpressed specifically in cancer blood vessels.
Checkmating tumors
Chess and cancer research have one thing in common: one must act strategically to defeat the opponent.
More Tumors News and Tumors Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.