Researchers create first portable tech for detecting cyanotoxins in water

June 25, 2019

North Carolina State University researchers have developed the first portable technology that can test for cyanotoxins in water. The device can be used to detect four common types of cyanotoxins, including two for which the U.S. Environmental Protection Agency (EPA) recently finalized recreational water quality criteria.

Cyanotoxins are toxic substances produced by cyanobacteria. At high enough levels, cyanotoxins can cause health effects ranging from headache and vomiting to respiratory paralysis and death.

The new technology is capable of detecting four common types of cyanotoxins: anatoxin-a, cylindrospermopsin, nodularin and microcystin-LR. One reason the portable technology may be particularly useful is that EPA finalized water quality criteria this month for both microcystin-LR and cylindrospermopsin in recreational waters.

"Our technology is capable of detecting these toxins at the levels EPA laid out in its water quality criteria," says Qingshan Wei, an assistant professor of chemical and biomolecular engineering at NC State and corresponding author of a paper on the work.

"However, it's important to note that our technology is not yet capable of detecting these cyanotoxins at levels as low as the World Health Organization's drinking water limit. So, while this is a useful environmental monitoring tool, and can be used to assess recreational water quality, it is not yet viable for assessing drinking water safety."

To test for cyanotoxins, users place a drop of water on a customized chip developed in Wei's lab, then insert it into a reader device, also developed in Wei's lab, which connects to a smartphone. The technology is capable of detecting and measuring organic molecules associated with the four cyanotoxins, ultimately providing the user's smartphone with the cyanotoxin levels found in the relevant water sample. The entire process takes five minutes.

"The reader cost us less than $70 to make, each chip cost less than a dollar, and we could make both even less expensive if we scaled up production," says Zheng Li, a postdoctoral researcher at NC State and first author of the paper.

"Our current focus with this technology is to make it more sensitive, so that it can be used to monitor drinking water safety," Wei says. "More broadly, we believe the technology could be modified to look for molecular markers associated with other contaminants."
-end-
The paper, "Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone," is published in the journal Analytical Chemistry. The paper was co-authored by Shengwei Zhang, a Ph.D. student at NC State; Tao Yu, a postdoctoral researcher at NC State; and Zhiming Dai, an undergraduate at NC State.

North Carolina State University

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.