Nav: Home

Using 3D-printing to stop hair loss

June 25, 2019

Columbia researchers have created a way to grow human hair in a dish, which could open up hair restoration surgery to more people, including women, and improve the way pharmaceutical companies search for new hair growth drugs.

It is the first time that human hair follicles have been entirely generated in a dish, without the need for implantation into skin.

Using 3D-Printing to Stop Hair Loss

For years it's been possible to grow mouse or rat hairs in the lab by culturing cells taken from the base of existing follicles.

"Cells from rats and mice grow beautiful hairs," Christiano says. "But for reasons we don't totally understand, human cells are resistant."

To break the resistance of human hair cells, Christiano has been trying to create conditions that mimic the 3D environment human hair cells normally inhabit. The lab first tried creating little spheres of cells inside hanging drops of liquid. But when the spheres were implanted in mice, the results were unpredictable: The cells from some people created new hair while others didn't.

3D Printing Creates Patterned Hair Follicles

In the new study, Christiano's team exploited the unique capability of 3D printers to create a more natural microenvironment for hair follicle growth.

The researchers used 3D printing to create plastic molds with long, thin extensions only half a millimeter wide. "Previous fabrication techniques have been unable to create such thin projections, so this work was greatly facilitated by innovations in 3D printing technology," says Erbil Abaci, PhD, first author of this study.

After human skin was engineered to grow around the mold, hair follicle cells from human volunteers were placed into the deep wells and topped by cells that produce keratin. The cells were fed a cocktail of growth factors spiked with ingredients, including JAK inhibitors, that the lab has found stimulates hair growth.

After three weeks, human hair follicles appeared and started creating hair.

Hair Farms Could Expand Availability of Hair Restoration

Though the method needs to be optimized, engineered human hair follicles created in this way could generate an unlimited source of new hair follicles for patients undergoing robotic hair restoration surgery.

Hair restoration surgery requires the transfer of approximately 2,000 hair follicles from the back of the head to the front and top. It is usually reserved for male patients whose hair loss has stabilized and who have enough hair to donate.

"What we've shown is that we can basically create a hair farm: a grid of hairs that are patterned correctly and engineered so they can be transplanted back into that same patient's scalp," Christiano says.

"That expands the availability of hair restoration to all patients--including the 30 million women in the United States who experience hair thinning and young men whose hairlines are still receding. Hair restoration surgery would no longer be limited by the number of donor hairs."

The engineered follicles also could be used by the pharmaceutical industry to screen for new hair growth drugs. Currently, high throughput screening for new hair drugs has been hampered by the inability to grow human hair follicles in a lab dish. No drugs have been found by screening; the only two approved for the treatment of pattern hair loss--finasteride and minoxidil--were initially investigated as treatments for other conditions.

The team hopes that cultured hair farms will open up the ability to perform high throughput drug screens to identify new pathways that influence hair growth.
-end-
The study, titled "Tissue engineering of human hair follicles using a biomimetic developmental approach," was published in Nature Communications.

Other authors: Hasan Erbil Abaci, Abigail Coffman, Yanne Doucet, James Chen, Joanna Jacków, Etienne Wang, Zongyou Guo, Jung U. Shin (all from Columbia University Vagelos College of Physicians and Surgeons) and Colin A. Jahoda (Durham University, Durham, U.K.).

The research was supported by the NIH (National Center for Advancing Translational Sciences grant UH2EB017103; National Institute of Arthritis and Musculoskeletal and Skin Diseases grants K01AR072131 and P30AR069632); New York State Stem Cell Science (SDH C029550); an Ines Mandl Research Foundation Fellowship; and a CUIMC Precision Medicine Research Fellowship (with funds from NIH grant UL1TR001873).

Dr. Christiano and Dr. Jahoda are founders of Rapunzel Bioscience Inc., which focuses on developing regenerative therapies for skin and hair disorders. The remaining authors declare no competing interests.

Columbia University Irving Medical Center

Related Drugs Articles:

People are more likely to try drugs for the first time during the summer
American teenagers and adults are more likely to try illegal or recreational drugs for the first time in the summer, a new study shows.
A homing beacon for chemotherapy drugs
Killing tumor cells while sparing their normal counterparts is a central challenge of cancer chemotherapy.
Drugs used to enhance sexual experiences, especially in UK
Combining drugs with sex is common regardless of gender or sexual orientation, reveals new research by UCL and the Global Drug Survey into global trends of substance-linked sex.
Promising new drugs for old pathogen Mtb
UConn researchers are targeting a metabolic pathway, the dihydrofolate reductase pathway, crucial for amino acid synthesis to treat TB infections.
Can psychedelic drugs heal?
Many people think of psychedelics as relics from the hippie generation or something taken by ravers and music festival-goers, but they may one day be used to treat disorders ranging from social anxiety to depression, according to research presented at the annual convention of the American Psychological Association.
New uses for existing antiviral drugs
Broad-spectrum antiviral drugs work against a range of viral diseases, but developing them can be costly and time consuming.
New TB drugs possible with understanding of old antibiotic
Tuberculosis, and other life-threatening microbial diseases, could be more effectively tackled with future drugs, thanks to new research into an old antibiotic by the University of Warwick and the Francis Crick Institute.
Versatile cancer drugs
Medications which block enzymes belonging to the kinase family, are among the most effective pharmaceuticals for targeted cancer therapies.
When HIV drugs don't cooperate
Researchers at Thomas Jefferson University studying combinations of drugs against HIV have discovered why some drugs sometimes act synergistically but sometimes do not.
'Accelerated approval' drugs: How well are they studied?
In a recent study published in JAMA, researchers at Brigham and Women's Hospital and the London School of Economics and Political Science examined the pre-approval and post-approval clinical trials of drugs granted FDA Accelerated Approval between 2009 and 2013.
More Drugs News and Drugs Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.