Nav: Home

New target for drug intervention in Alzheimer's disease identified

June 25, 2019

BIRMINGHAM, Ala. - Scientists at the University of Alabama at Birmingham have identified an enzyme in the brain that may be an intriguing target for interventions against Alzheimer's disease and other dementias.

The researchers suggest that the enzyme, a serine/threonine kinase known as LIMK1, may play an important role in the degradation of dendritic spines, the connections between neurons in the brain. In a paper published June 25 in Science Signaling, the team reports on the use of an experimental medication that appears to successfully inhibit LIMK1 and provide a level of protection for dendritic spines.

"This is the first study to showcase that inhibiting LIMK1 could provide a protective effect for dendritic spines," said Jeremy Herskowitz, Ph.D., assistant professor in the Department of Neurology, School of Medicine at UAB. "In animal models, we've shown that increased activity of LIMK1 is linked to changes in the length and density of dendritic spines, which has implications for Alzheimer's."

Think of dendritic spines as bridges connecting one neuron to another. Previous research in Herskowitz's laboratory showed that individuals with longer and more numerous spines did not develop symptoms of dementia, even if they had the well-known Alzheimer's pathology of amyloid plaques and tau tangles.

"In a healthy brain, LIMK1 appears to regulate the size and density of dendritic spines," Herskowitz said. "In dementia, the enzyme is overactive, leading to damage to the spines. In this study, we were able to provide a protective effect to the dendritic spines by means of an experimental drug that inhibited activity of LIMK1."

LIMK1 resides downstream of two other enzymes known to be associated with dementia. These Rho-associated kinases, known as ROCK 1 and ROCK 2, are increased in early Alzheimer's disease, Herskowitz says. Investigators worldwide have looked to ROCK 1 and 2 as potential intervention targets in dementia.

"The ROCK kinases are proving to be challenging drug targets because inhibiting them may cause severe side effects -- including a drop in blood pressure significant enough to cause death," Herskowitz said. "But LIMK1, downstream in the signaling pathway, is regulated by the ROCK kinases, particularly ROCK 2. As far as we know now, inhibition of LIMK1 has no effect on ROCK, and so it may not carry the same severe side effects."

LIMK1 is also thought to play a role in cancer metastasis, so Herskowitz's team turned to an experimental drug called SR7826, which is under development as a cancer therapeutic. SR7826 suppresses the activity of LIMK1. In an animal model, a single dose given once daily for 10 days boosted dendritic spine density and increased the length of the spines.

"The drug had remarkable effects on the dendritic spines, results that we feel are significant and promising," Herskowitz said. "We observed no negative side effects."

Herskowitz says further studies will be needed to see if the effect continues over time and if any negative effects develop.

"This is one of the first scientific papers to suggest that LIMK1 might be a better target for intervention than the Rock kinases," he said. "Another important aspect of this sort of target is that it could lead to an intervention before loss of cognitive function has begun. It could provide a protective effect to prevent damage or loss of dendritic spines."
-end-
The study was funded by the National Institute on Aging, one of the National Institutes of Health.

University of Alabama at Birmingham

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.