Blue color tones in fossilized prehistoric feathers

June 25, 2019

Examining fossilised pigments, scientists from the University of Bristol have uncovered new insights into blue colour tones in prehistoric birds.

For some time, paleontologists have known that melanin pigment can preserve in fossils and have been able to reconstruct fossil colour patterns.

Melanin pigment gives black, reddish brown and grey colours to birds and is involved in creating bright iridescent sheens in bird feathers.

This can be observed by studying the melanin packages called melanosomes, which are shaped like little cylindrical objects less than one-thousandth of a millimetre and vary in shape from sausage shapes to little meatballs.

However, besides iridescent colours, which is structural, birds also make non-iridescent structural colours.

Those are, for example, blue colour tones in parrots and kingfishers. Until now, it was not known if such colours could be discovered in fossils.

This blue structural colour is created by the dense arrangement of cavities inside feathers, which scatters the blue light. Underneath is a layer of melanin that absorbs unscattered light.

Paleontologists have shown that the feather itself, which is made of keratin, does not fossilise while the melanin does. Therefore, if a blue feather fossilised, the dark pigment may be the only surviving feature and the feather may be interpreted as black or brown.

Now researchers from the University of Bristol, led by Frane Barbarovic who is currently at the University of Sheffield, have shown that blue feather melanosomes are highly distinct from melanosomes that are from feathers expressing black, reddish-brown, brown and iridescent, but overlap significantly with some grey feather melanosomes.

By looking at plumage colourations of modern representatives of fossil specimen and reconstructing which colour was the most likely present in the fossil specimen, they were able to discriminate between melanosomes significant for grey and blue colour, leading to the reconstruction of prehistoric Eocoracias brachyptera as a predominantly blue bird.

Frane Barbarovic said: "We have discovered that melanosomes in blue feathers have a distinct range in size from most of colour categories and we can, therefore, constrain which fossils may have been blue originally.

"The overlap with grey colour may suggest some common mechanism in how melanosomes are involved in making grey colouration and how these structural blue colours are formed.

"Based on these results in our publication we have also hypothesized potential evolutionary transition between blue and grey colour."

The research team now need to understand which birds are more likely to be blue based on their ecologies and modes of life. The blue colour is common in nature, but the ecology of this colour and its function in the life of birds is still elusive.

Frane Barbarovic added: "We also need to understand how grey colour is made. This is made in a very different way in birds than it is in mammals. We believe it is related to how the melanosome shape can result in a kind of self-assembling process in the feather and the surface tension of the melanosomes pull them into certain configurations inside a feather as it forms."
-end-


University of Bristol

Related Birds Articles from Brightsurf:

In a warming climate, can birds take the heat?
We don't know precisely how hot things will get as climate change marches on, but animals in the tropics may not fare as well as their temperate relatives.

Dull-colored birds don't see the world like colorful birds do
Bengalese finches -- also called the Society finch -- are a species of brown, black and white birds that don't rely on colorful signals when choosing a mate.

Some dinosaurs could fly before they were birds
New research using the most comprehensive study of feathered dinosaurs and early birds has revised the evolutionary relationships of dinosaurs at the origin of birds.

If it's big enough and leafy enough the birds will come
A new study from the Cornell Lab of Ornithology highlights specific features of urban green spaces that support the greatest diversity of bird species.

How do birds understand 'foreign' calls?
New research from Kyoto University show that the coal tit (Periparus ater) can eavesdrop and react to the predatory warning calls of the Japanese tit (Parus minor) and evokes a visual image of the predator in their mind

Microelectronics for birds
Ornithologists and physicists from St Petersburg University have conducted an interdisciplinary study together with colleagues from Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences and the Biological Station Rybachy of the Zoological Institute of the Russian Academy of Sciences.

Birds of a feather better not together
A new study of North American birds from Washington University in St.

Not-so-dirty birds? Not enough evidence to link wild birds to food-borne illness
Despite the perception that wild birds in farm fields can cause food-borne illness, a WSU study has found little evidence linking birds to E. coli, Salmonella and Campylobacter outbreaks.

Birds are shrinking as the climate warms
After 40 years of collecting birds that ran into Chicago buildings, scientists have been able to show that the birds have been shrinking as the climate's warmed up.

Diving birds follow each other when fishing
Diving seabirds watch each other to work out when to dive, new research shows.

Read More: Birds News and Birds Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.