Study uses RNA sequencing as alternative to immunohistochemistry in cancer diagnostics

June 25, 2020

For the first time, researchers from the Moscow Institute of Physics and Technology and their colleagues have succeeded in using RNA sequencing as an alternative to immunohistochemistry for cancer diagnostics. Their study was published in Biomedicines.

The conventionally used method for cancer diagnostics relies on immunohistochemical dyeing of tumor tissue sections. It allows to detect the presence and measure the concentration of marker proteins characterizing malignant growths. The procedure involves immersing a tumor sample in hot paraffin. Once cooled, a block of paraffinized tissue is cut into thin sections, which are then dyed and studied with a microscope. The resulting images indicate whether the tumor is malignant and what its molecular type is. This information is crucial for selecting the right therapy.

Another method, RNA sequencing involves determining the sequence and the number of molecules for each RNA present in the cell. The resulting data, referred to as the transcriptome, reflects the activity of all genes in the cell. To analyze such vast arrays of data, bioinformaticians employ specialized algorithms and compile transcriptome databases for different human cells and tissues.

The authors of the recent paper in Biomedicines have proposed that RNA sequencing be used as an alternative and complementary technique to the conventional immunohistochemical dyeing. Under this approach, the same paraffinized tumor fragments can be used in the analysis. This means no additional biopsy is required, and the two techniques will be fairly easy to combine.

"We have shown for the first time that the findings of both methods are in perfect agreement for the selected set of biomarkers. It's just that immunohistochemistry requires a much greater number of experiments -- one for every biomarker considered -- meaning that much more biomaterial is needed. In turn, RNA sequencing enables us to quantitatively characterize the work of all protein-encoding genes, and there are about 20,000 of them!" said principal investigator Anton Buzdin, who heads the Laboratory for Translational Genomic Bioinformatics at MIPT and leads the Research Department at Oncobox.

In their study, the researchers showed a clear correlation between the expression levels of four tumor marker genes measured via RNA sequencing, and the results of immunohistochemical dyeing.

"We are convinced that RNA sequencing has a great future in medical diagnostics. Hopefully, our latest study has brought that future a little closer," Buzdin added.
-end-
Besides researchers from the MIPT Laboratory for Translational Genomic Bioinformatics, the research reported in this story involved scientists and medics from the Institute for Personalized Medicine of Sechenov University, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, Karelia Republic Oncological Hospital, Oncological Dispensary of the Republic of Karelia, Vitamed Clinical Center, Lomonosov Moscow State University, Kaluga Regional Oncological Hospital, and Oncobox (U.S.).

The study was supported by the Russian Science Foundation.

Moscow Institute of Physics and Technology

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.