NYU Abu Dhabi researchers measure motions in the Sun to explain the solar cycle

June 25, 2020

Fast factsIn a newly-published study, researchers from the Center for Space Science at NYU Abu Dhabi (NYUAD) and colleagues used helioseismology and analyzed several data sources to find that the Sun's meridional flow is a single cell in each hemisphere that carries plasma toward the Sun's equator 200 thousand km below the surface. The meridional flow carries the solar plasma from the Sun's equator to its poles at the surface and back again towards the equator at the bottom of the convection zone, a process that determines the characteristics of the sunspot cycle.

The researchers' findings support the flux-transport dynamo model, which relies on the meridional flow to explain the 11-year duration of the sunspot cycle and the latitudinal drift of the location where sunspots emerge. Lead author Laurent Gizon and co-author Chris Hanson of the Center for Space Science at NYUAD report in the paper Meridional flow in the Sun's convection zone is a single cell in each hemisphere published in Science how they utilized helioseismology to infer the meridional flow (in the latitudinal and radial directions) over two solar cycles covering twenty-three years.

Two data sources agree during their overlap period of 2001-2011 that the meridional flow is a single cell in each hemisphere, carrying the plasma toward the equator at the base of the convection zone at a speed of less than 10 MPH.

The Sun's magnetic field is generated by motions of the convecting plasma below our star's surface. The latitude at which the magnetic field emerges through the solar surface (as sunspots) drifts toward the equator over the course of the 11-year solar cycle. During the solar cycle, the Sun's magnetic field builds-up in the solar interior, rises up, and leads to the formation of sunspots where it pierces the solar surface.

"We set out to reinforce our understanding of how sunspots, which are magnetized regions on the Sun, are formed during a solar cycle," said Gizon. "Our analysis supports the flux-transport dynamo model to explain the period of the sunspot cycle and the latitudes at which sunspots emerge."
-end-


New York University

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.