Life In Antarctic Ice May Compare To Mars

June 25, 1998

CORVALLIS, Ore. - Bacterial colonies are thriving underneath ice on one of the coldest, driest deserts on Earth, researchers have discovered, in conditions that might compare to those on Mars or Europa and provide insights for life forms that could be found elsewhere in our solar system.

The study will be reported Friday in the journal Science.

This study was conducted on ice-covered lakes in the McMurdo Dry Valleys of Antarctica, which has an average annual temperature about 68 degrees below zero and gets less than four inches of precipitation a year.

But in that frigid, arid environment, scientists at Oregon State University and four other institutions found liquid water pockets embedded about six feet deep in solid ice, where a combination of sediments, water and solar radiation during long summer days supports a viable population of bacteria.

"This is a very barren environment with virtually nothing we usually associate with living organisms," said Stephen Giovannoni, an associate professor of microbiology at Oregon State University. "But these photosynthetic cyanobacteria are alive, self-sufficient, and growing. They're able to live through the harsh freeze-thaw cycle of the seasons, fix nitrogen and release oxygen as they make carbohydrates from water and carbon dioxide."

"They have their own little world there we knew nothing about."

The nutritional requirements of these life forms are minimal, Giovannoni said - a little light, water, carbon dioxide, phosphate, nitrate and other minerals. But in fact the primitive life processes they are undertaking are quite similar to those that first formed the oxygen-rich atmosphere of Earth and made higher life forms possible.

And in the study, the researchers cite two locations where they feel conditions may exist that are similar to those found in barren Antarctica - Mars, and a large moon of Jupiter, Europa.

"It's been suggested that Mars is too dry and cold for life to exist," Giovannoni said. "But it's also known that both Mars and Europa have frozen water on or near their surfaces. We speculate that in conditions similar to those we observed in Antarctica, it would be a distinct possibility that similar life forms exist on Mars or Europa."

While Mars may have had extensive liquid water at one time, the researchers say in their report, it rapidly cooled and ice would have become, as it is today, the dominant form of water on Mars' surface. A search for fossil evidence of the most recent life on Mars' surface could be based on life within ice, they said.

The process of life formation is still largely unknown and very complex, Giovannoni said.

"Any cell, even a very basic cell such as those found in bacteria, is a very complicated thing," he said. "But experiments have shown you can get fairly complicated molecules and amino acids from the interaction of basic chemicals and electricity."

Giovannoni has studied bacteria all over the Earth, from the basalt rocks of deep sea floors to Antarctic ice cores, Yellowstone National Park hot springs and the bacterial plankton of Oregon's Crater Lake. Researchers continue to be amazed, he said, at how little is known about microbes, how few have actually been described, how they function and their ecological interaction with the rest of the world.

"Recent advances in molecular biology now allow us to identify these unknown organisms, and what we're learning is the world is full of bacteria we know virtually nothing about," he said. "I could probably isolate a new, previously unknown bacterium from the sole of your shoe."

Past research has been held back by lack of funding, Giovannoni said, as agencies seemed unsure that studies of bacteria, their evolution or behavior had any practical value. But new applications of bacterial research in understanding the global carbon cycle, creating new antibiotics or enzymes for industrial use have raised increasing interest, he said.

And the search for life elsewhere in the universe might first be successful, he said, when bacteria such as those being identified in Antarctica are one day found on Mars.
-end-
By David Stauth, 541-737-0787



Oregon State University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.