Nav: Home

New Microbial Insecticide As Potent As Bt

June 25, 1998

MADISON - By isolating and characterizing the biochemical properties of a new-found natural insecticide, scientists have taken an important step toward augmenting the sparse armamentarium of biological pest control.

Writing today (Friday, June 26) in the journal Science, a team of scientists from the University of Wisconsin-Madison describe the properties of a family of insecticidal toxins produced by Photorhabdus luminescens, a bacterium that, in nature, infects and kills insects with the help of a tiny worm or nematode.

The toxins produced by Photorhabdus are active against a wide range of insects and are at least as potent as the insect-killing poisons produced by Bacillus thuringiensis or Bt, the reigning king of natural insecticides, according to Richard ffrench-Constant, a UW-Madison professor of toxicology in the department of entomology and the principal author of the new study.

"These new toxins are highly efficient killers of insects and they hold for the future the same promise first revealed in Bt more than 30 years ago," said ffrench-Constant.

Widely used for decades in the home, in forests and on farms, Bt is also a bacterium and is considered to be a safe, effective and environmentally benign weapon in the war on insect pests. Moreover, in the last few years the genes that govern the production of the Bt toxin have been moved from the bacterium into crop plants, which this year account for 20 percent of the U.S. cotton crop and nearly 10 million acres of transgenic corn, mostly in the Midwest.

As a form of biological pest control, Bt is the only bacterium from which widespread commercial insecticidal applications have been possible, giving it, in effect, a microbial monopoly on insect control worth hundreds of millions of dollars.

But the development of new, naturally occurring insecticides has taken on new urgency in recent years as resistance to Bt has been reported in some populations of insect pests.

"Potential resistance to Bt is now a big issue," said ffrench-Constant. "Developing new biological agents for the control of insect pests is therefore essential."

Photorhabdus, ffrench-Constant suggests, may become an important alternative to Bt, or could be deployed in concert with Bt to prolong the effective life of both biological insecticides by delaying the evolution of resistant strains of insect pests. He described the deployment of Bt transgenic crops as the biggest experiment in natural selection for insecticide resistance since the introduction of chemical pesticides 50 years ago.

"What we have with Photorhabdus and other bacteria is a natural source, almost an infinite variety" of toxic molecules, says ffrench-Constant. "We can't afford to hook ourselves to a single bacterium or a single toxin."

In nature, Photorhabdus bacteria live inside the guts of nematodes that invade insects. Once inside an insect host, the bacteria are released from the nematode, kill the insect, and set up rounds of bacterial and nematode reproduction that turns the insect into a "protein soup," food for large numbers of nematodes.

Moreover, the insect corpses left behind glow in the dark as the microbe produces luminescent proteins in addition to potent insecticides.

Previous studies have shown that, in concentrated doses, the toxin can be used as a spray or fed directly to insects. The greatest potential application, however, lies in transferring the toxin-producing genes from the bacteria to crop plants.

The incentive to confer crop plants with their own insecticides is huge. Farmers now spend more than $575 million annually on chemical pesticides to protect corn alone.

In addition to ffrench-Constant, co-authors of the Wisconsin study include David Bowen, Thomas A. Rocheleau, Michael Blackburn, Olga Andreev, Elena Golubeva and Rohit Bhartia.
-end-
Terry Devitt, (608) 262-8282, trdevitt@facstaff.wisc.edu
-end-


University of Wisconsin-Madison

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.