Virginia Tech researchers receive $450,000 award to model cell division

June 26, 2002

BLACKSBURG, Va., June 26, 2002 -- Cancer is a group of diseases involving misregulation of cell growth and division. The more we know about how cells grow and divide under normal circumstances, the better we will understand how things go awry in cancer cells.

For this reason, John Tyson, University Distinguished Professor of Biology at Virginia Tech, and Bela Novak, professor of biotechnology at the Budapest University of Technology and Economics, are developing mathematical models of the molecular mechanisms that control the way yeast cells grow and assume various shapes.

Their work is being supported by a $450,000 grant from the James S. McDonnell Foundation of St. Louis, Mo.

"Division and shape are important to yeasts because, by growing in specific directions, they are able to seek out viable environments and potential mates," Tyson said. "Understanding how yeast cells control these processes is important to us not only because of the cancer connection, but also because we are still very much in the dark about how genes regulate behavior in the broadest sense.

"While the genome project has provided a parts list of the cell, scientists need a schematic diagram of how all those parts hook together," Tyson said. "From the schematic diagram, we can write equations that govern the behavior of the control system, much like an electrical engineer can write equations for a circuit diagram. With these equations we can predict how a cell will behave under many different conditions."

Although a human cell is more evolved than a yeast cell, a human cell is made of the same sorts of parts that behave in the same way. It was found that "the molecular constituents of the cell cycle control system are functionally interchangeable between yeast and humans," Tyson said. "What we learn about cell division in yeast can be carried over to humans." From what they learn about the molecular mechanism of yeast cell growth and division, Tyson and Novak will attempt to extrapolate the mathematical model to humans.

The McDonnell Foundation funds come from its 21st Century Science Initiative, which provides private funds "to support and encourage researchers pursuing difficult, important projects where results might be more likely to advance our current state of knowledge." The initiative covers three topics: Studying Complex Systems, Brain Cancer Research, and Bridging Brain, Mind, and Behavior. Studying Complex Systems, the area in which Tyson's work falls, emphasizes the development and application of theoretical models used in research fields such as biology, biodiversity, energy, and climate.

The project being conducted by Tyson and Novak is called "Spatial Patterns of Yeast Cell Growth and Division: Molecular Mechanisms and Mathematical Models."
-end-
Visit Dr. Novak's lab at http://cellcycle.mkt.bme.hu/ or contact Dr. Novak at bnovak@chem.bme.hu

PR CONTACT: Sally Harris 540-231-6759 slharris@vt.edu

Virginia Tech

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.