Several tons of uranium and a town called Colonie

June 26, 2007

Recent research by the Department of Geology at University of Leicester, and at the British Geological Survey aims to improve understanding of how depleted uranium particulate behaves in the environment. PhD research student Nicholas Lloyd has identified uranium oxide particulate that has survived more than 25 years in the environment, and depleted uranium contamination nearly 6 km from point of release.

The use of depleted uranium (DU) munitions by US and British forces has been highly controversial; on impact with armoured targets they shed uranium particulate that can be inhaled into the lungs. DU is both weakly radioactive and chemically toxic. Concerns raised by campaign groups have been the subject of numerous newspaper headlines, and it is frequently cited as a possible cause of Gulf War syndrome.

However, under the scrutiny of peer-review, scientific studies have so far failed to demonstrate a significant connection between inhalation exposure and human ill-health. One of the problems is that no studied non-occupational populations have been shown to have significant inhalation exposure to DU.

During the 1960s and '70s an estimated 5 tonnes of uranium was emitted into the environment, in a residential area of Colonie, NY, USA. Local residents are concerned that they were exposed to airborne particulate, and have campaigned for a health study. The current research could provide valuable baseline data for such a study.

The researchers led by Professor Randall Parrish collected hundreds of soil and dust samples last July, with the help of local residents and Dr John Arnason of SUNY at Albany. Soils and dusts have been examined using scanning electron microscopy, and reveal micrometer diameter uranium-rich particulate (invisible to the naked eye). These particles may be resuspended and inhaled. The samples have also been analysed by mass spectrometry, revealing contamination several hundreds of times greater than background near source, and trace contamination 35 cm below surface and as far afield as 5.8 km.

Nicholas said that the study by University of Leicester and the British Geological Survey aims to improve understanding of how depleted uranium particulate behaves in the environment. The study shows that uranium oxide particulate is both mobile and durable in the environment.

The research is being presented to the public at the University of Leicester on June 29. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.
-end-
More information on the Festival of Postgraduate Research at: www.le.ac.uk/gradschool/festival

University of Leicester

Related Uranium Articles from Brightsurf:

Russian scientists suggested a transfer to safe nuclear energy
Scientists from Far Eastern Federal University (FEFU), Ozersk Technological Institute, and the Russian Academy of Sciences have improved a processing technology of a monazite concentrate which is a mineral raw material employed as a source of rare earth elements and thorium.

Story tips: Molding matter atom by atom and seeing inside uranium particles
Story tips from the Department of Energy's Oak Ridge National Laboratory: Molding matter atom by atom and seeing inside uranium particles

Atomic fingerprint identifies emission sources of uranium
Depending on whether uranium is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies.

Old molecule, new tricks
Fifty years ago, scientists hit upon what they thought could be the next rocket fuel.

Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Uranium chemistry and geological disposal of radioactive waste
A new paper to be published on Dec. 16 provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's nuclear legacy.

Laser-produced uranium plasma evolves into more complex species
When energy is added to uranium under pressure, it creates a shock wave, and even a tiny sample will be vaporized like a small explosion.

Using building materials to monitor for high enriched uranium
A new paper details how small samples of ubiquitous building materials, such as tile or brick, can be used to test whether a facility has ever stored high enriched uranium, which can be used to create nuclear weapons.

Uranium toxicity may be causing high rates of obesity and diabetes in Kuwait
Kuwait has some of the highest rates of obesity and diabetes in the world, and scientists don't know why.

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy
Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.

Read More: Uranium News and Uranium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.