Nav: Home

Monitoring changes in wetland extent can help predict the rate of climate change

June 26, 2017

Monitoring changes to the amount of wetlands in regions where permafrost is thawing should be at the forefront of efforts to predict future rates of climate change, new research shows.

Permafrost -- frozen ground -- holds huge amounts of carbon which may be released into the atmosphere as the climate warms and these soils thaw. For this reason it is critically important to know where thaw is taking place and how much carbon is being exposed.

But a new study says that the effects of thaw on the release of the powerful greenhouse gas, methane, may be better predicted by monitoring changes in the area of wetlands rather than by investigating how much carbon is being exposed.

Permafrost thaw is caused by climate change which warms northern high latitudes faster than elsewhere on Earth. The release of permafrost carbon to the atmosphere could accelerate rates of climate change, with some estimates suggesting that potential rates of release could rival those from tropical deforestation. If even a small proportion of the carbon is released in the form of methane, a more powerful greenhouse gas than carbon dioxide, then the feedback becomes even more significant.

There are around 1 million km2 of permafrost peatlands on Earth and they store approximately 20 per cent of the total permafrost carbon stock which is predicted to thaw this century. The rate at which frozen organic soils could potentially decompose is up to five times greater than for frozen mineral soils, and peats are disproportionately likely to be water-logged following thaw, the very conditions that promote methane release.

The new study, published in Nature Climate Change, measured rates of methane production from thawing peatlands in the boreal region of northern Canada. Permafrost thaw in these ecosystems results in the formation of wetlands that can be major sources of methane. However, contrary to expectations, it was demonstrated that very little of the methane released was derived from the decomposition of ancient plant material that was previously stored in permafrost.

In fact the researchers, from the University of Exeter, University of Sussex, University of Sheffield, University of Edinburgh and NERC Radiocarbon Facility in the UK, and from the Northwest Territories Geological Survey, Geological Survey of Canada and University of Ottawa in Canada, observed that the large amounts of methane being produced resulted from the decomposition of new organic matter derived from the vegetation that colonised these wetlands after permafrost thawed.

Dr Iain Hartley, from the University of Exeter's College of Life and Environmental Sciences, said: "We have found the effects of permafrost thaw on methane release from northern peatlands may be driven more by changes in the extent of wetlands, than by methane produced from the decomposition of the previously-frozen organic matter itself.

"To identify the most important factors controlling the effects of permafrost thaw on methane fluxes, it is really important to understand what the main source of the methane being released is. In the peatlands that we studied, the limited contribution of previously frozen carbon to the methane fluxes, tells us that near-surface water-table dynamics and the productivity of the current vegetation is likely to be the key to driving fluxes in these systems."

"For this reason, we need to improve our abilities to monitor and predict future changes in wetland extent."

Professor Mathew Williams, from the University of Edinburgh's School of Geosciences and leader of the overall project, added "There are developing opportunities to use satellites to monitor wetland extent and its changes over time. However, predicting the location and timing of thaw in permafrost regions - and hence the development of wetlands - remains a challenge. Thaw is linked to rising temperatures, but, because vegetation and soils insulate permafrost, predictions also have to take account of climate change effects on vegetation. Our research now has to address these complex interactions."

Professor Julian Murton from the University of Sussex said: "The permafrost-soil-vegetation system is complex and sensitive to climate and environmental change. As warming of high-latitude forest and tundra regions is expected to continue in the 21st century, widespread thaw of near-surface, ice-rich permafrost is anticipated. This in turn will trigger ecological and biogeochemical changes that themselves influence climate and environmental change. Some areas of permafrost will get wetter on the surface, others drier. Distinguishing between such areas is important to modelling of greenhouse gas emissions."
-end-
The research was funded by the UK Natural Environment Research Council and Department of Energy and Climate Change.

University of Exeter

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.