Nav: Home

Pulling the tablecloth out from under essential metabolism

June 26, 2017

Because plants can't get up and run away, they've had to be clever instead. They are the chemists of the living world, producing hundreds of thousands of small molecules that they use as sunscreens, to poison plant eaters, to scent the air, to color flowers, and for much other secret vegetative business.

Historically these chemicals, called "secondary metabolites," have been distinguished from "primary metabolites," which are the building blocks of proteins, fats, sugars and DNA. Secondary metabolites smooth the way in life but the primary metabolites are essential, and the failure to make them correctly and efficiently is fatal.

Secondary metabolism is thought to have evolved to help plant ancestors deal with living on dry land rather than the more hospitable oceans. The idea is that the genes for enzymes in the molecular assembly lines of primary metabolism were duplicated. The duplicates were more tolerant of mutations that might have destabilized the primary pathways because the originals were still on the job. With evolutionary constraints thus relaxed, synthetic machinery was able to accumulate enough mutations to do new chemistry.

Primary metabolism, however, is widely conserved, meaning that it remains unchanged across many different groups of organisms because it has been fine tuned to operate correctly and efficiently and because its products are necessary for life. Or so the textbooks say.

But now a collaborative team of scientists has caught primary metabolism in the act of evolving. In a comprehensive study of a primary-metabolism assembly line in plants, they discovered a key enzyme evolving from a canonical form possessed by most plants, through noncanonical forms in tomatoes, to a switch-hitting form found in peanuts, and finally committing to the novel form in some strains of soybeans.

This feat, comparable to pulling the tablecloth out from under the dishes without any breaking any of them, is described in the June 26 issue of Nature Chemical Biology. It is the work of a collaboration between the Maeda lab at the University of Wisconsin, which has a longstanding interest in this biochemical pathway, and the Jez lab at Washington University in St. Louis, which crystallized the soybean enzyme to reveal how nature changed how the protein works .

"The work captures plants in the process of building a pathway that links the primary to the secondary metabolism," said Joseph Jez, the Howard Hughes Medical Institute Professor in the Department of Biology in Arts & Sciences. "We're finally seeing how evolution creates the machinery to make new molecules."

It may also have practical importance because the old and the new pathways make the amino acid tyrosine, which is a precursor for many secondary metabolites with biological and pharmaceutical activity-- everything from vitamin E to opioids. But the old pathway makes only tiny amounts of these compounds, in part because they must compete for carbon atoms with the greedy process for making lignin, the tough polymers that let plants stand tall.

The discovery of the new pathway for making tyrosine is much less constrained than the old one. This raises the possibility that carbon flow could be directed away from lignin, increasing the yields of drugs or nutrients to levels that would allow them to be produced in commercial quantities.

A tale of two enzymes

Tyrosine is made on an assembly line called the shikimate pathway, a seven-step metabolic pathway that plants use to make the three amino acids that have aromatic rings. Animals (including people) shed the ability to erect this assembly line deep in the evolutionary past. Because we cannot make these amino acids on our own and they are essential for life, we must instead obtain them by eating plants or fungi.

That aromatic ring is important, said Jez, because it is a distinctive structure that can absorb light or energy. So the aromatic amino acids also are the precursors for many secondary metabolites that capture light, transfer electrons, or color flowers. Moreover, the aromatic amino acids are also precursors for chemicals that poison other plants or plant predators and attract pollinators. Many medicinal drugs include an aromatic ring, Jez commented.

In most plants the shikimate pathway is in the chloroplast, the organelle that does the work of converting the energy of sunlight to energy stored in carbon bonds. Once made, however, tyrosine can be exported out of the cytosol for incorporation or conversion into other compounds.

In the last step of one branch of the pathway an enzyme called arogenate dehydrogenase (ADH), catalyzes a reaction that makes the compound arogenate into tyrosine. The ADH enzyme is considered "regulatory" because it is a bottleneck in tyrosine production. It must compete for the arogenate substrate with the branch of the shikimate pathway that makes a different aromatic amino acid and it is strongly inhibited by the buildup of tyrosine

ADH activity is common in plants, but in the course of studying the shikimate pathway the Maeda lab discovered that the DNA sequences coding for ADH in some flowering plants were significantly different from those in most plants. They called the enzymes produced by these sequences noncanonical ADH. Then, in 2014, they reported that some legumes also make tyrosine with a different enzyme, called prephenate dehydrogenase (PDH).

PDH differs from ADH in many ways. It is active outside the chloroplast, it acts on the substrate prephenate rather than on arogenate, because it is outside the chloroplast it does not have to compete for its substrate with other branches of the shikimate pathway, and it is not inhibited by rising levels of tyrosine.

Why are there two different assembly lines for tyrosine? The scientists believe the PDH enzyme evolved via two gene duplication events and the accumulation of mutations in the "extra" copies of the gene. The first event gave rise to nonstandard ADHs in some flowering plants and the second to PDH in a subset of legumes. But why did this happen?

That's not a question the scientists can answer yet except in general terms, Jez said. What sticks out, however, is that the more recently evolved metabolic pathway is not tightly regulated and could potentially churn out product at a hectic pace. Perhaps the legumes were in dire need of secondary metabolites for some reason. It is certainly suspicious that legumes have an ecology quite different from that of other plants, since they live symbiotically with nitrogen-fixing bacteria.

Fiddling the bits

By this point the scientists knew that the novel enzyme, PDH, bound a different substrate than the original enzyme, ADH. They also knew that PDH, unlike ADH, did not bind tyrosine itself. But what changes in structure led to these differences in chemical activity?

To find out, Craig Schenck, a graduate student in the Maeda lab, compared the gene sequences for the ADH or PDH enzyme in many different plants, carefully chosen to be on the boundaries of the switchover from one enzyme to the other. But they encountered a problem. There were enough differences in the DNA that it was difficult to see what was relevant, Jez said.

Encountering Maeda at a conference, Jez offered to try crystallizing the novel enzymes so that their structure could be reconstructed from X-ray images. His graduate student Cynthia Holland was able to crystallize the soybean PDH and produce detailed images of its three-dimensional shape.

"Once you looked at the structure you could see that there were only two differences from the typical ADH found in most plants and only one of the differences actually changed things," Jez said. Stunningly that difference was a single amino acid in the active site on the enzyme. At that spot the asparagine had replaced aspartic acid.

Schenck double-checked this structural insight by flipping that amino acid in mutant forms of the enzyme. The ADH mutant turned out to have PDH activity, and the PDH mutant had ADH activity, just as the team had suspected.

"That one difference changes the enzyme's preferred substrate and its ability to be inhibited by tyrosine feedback," Jez said. "And if you look at it, it's literally the difference between a nitrogen atom or an oxygen atom. In these proteins, which are made up of nearly three hundred amino acids or forty-two hundred atoms, one atom makes all the difference. That's just kind of cool."

The work is important because it demonstrates that primary metabolism does evolve. And because it shows how nature steals machinery from primary metabolism and cobbles it together for making novel secondary metabolites. They do this with much more finesse than genetic engineers can yet manage.

"When we want a plant to make a new molecule," Jez said, "we drop in a gene and hope it integrates with existing pathways. We still don't know how to readily connect the wiring between what we drop in and what is already there. So it is interesting to see how nature contrived to connect the wiring and change things without breaking them."
-end-
This work was supported by National Science Foundation grants IOS-1354971 and MCB-1614539. Cynthia Holland was supported by the NSF Graduate Research Fellowship Program (DGE-1143954).

Washington University in St. Louis

Related Amino Acids Articles:

CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Metabolic reprogramming of branched-chain amino acid facilitates drug resistance in lung cancer
Research teams led by Dr. Ji Hongbin at the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences, Dr.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
Characterisation of the structure of a member of the L-Amino acid Transporter (LAT) family
Mutations in L-amino acid transporters (LATs) can lead to a wide range of conditions, such as autism, hearing loss and aminoacidurias.
Model learns how individual amino acids determine protein function
A machine-learning model from MIT researchers computationally breaks down how segments of amino acid chains determine a protein's function, which could help researchers design and test new proteins for drug development or biological research.
Starving leukemia cells by targeting amino acids
Eliminating ASCT2 selectively stops the growth of leukemia cells, while having limited effects on healthy blood cells and hematopoetic (blood-forming) stem cells.
Unveiling the role of selenocysteine, the mysterious 21st amino acid
Selenocysteine is an essential amino acid for certain species, such as humans and the other vertebrates, although it has disappeared from others, such as insects.
Novel electron microscopy offers nanoscale, damage-free isotope tracking in amino acids
A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale -- while keeping the sample intact -- could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life.
Enzyme that breaks down amino acids may promote aging
Permanently arrested cell growth is known as 'cellular senescence', and the accumulation of senescent cells may be one cause of aging in our bodies.
More Amino Acids News and Amino Acids Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab