Stanford scientists create a cellular guillotine for studying single-cell wound repair

June 26, 2017

While doing research at the Woods Hole Marine Biological Laboratory in Massachusetts, Sindy Tang learned of a remarkable organism: Stentor coeruleus. It's a single-celled, free-living freshwater organism, shaped like a trumpet and big enough to see with the naked eye. And, to Tang's amazement, if cut in half it can heal itself into two healthy cells.

Tang, who is an assistant professor of mechanical engineering at Stanford University, knew right away that she had to study this incredible ability. "It is one of the Holy Grails of engineering to make self-healing materials and machines," she said. "A single cell is analogous to a spacecraft - both have to figure out how to repair damage without anyone's help from the outside."

But before they could pursue that Holy Grail, Tang and fellow researchers needed a way to efficiently slice the cell in two -- traditional methods take three minutes per cell and they needed hundreds for their experiments. To that end, they developed a new tool that is essentially an assembly line guillotine for cells. This device, detailed in the June 27 issue of the Proceedings of the National Academy of Sciences, pushes a row of cells down a tight channel onto a pointed knife blade, which cuts the cells evenly in half. This guillotine cuts Stentor cells 200 times faster than the previous method with similar survival rates.

In addition to spurring the development of self-healing materials, being able to efficiently study cell healing could eventually help scientists study and treat a variety of human diseases related to cell regeneration, such as cancer and neurodegenerative diseases, said Lucas Blauch, a graduate student in the Tang lab and lead author of the study.

Prior to Tang's cellular guillotine, scientists hoping to study Stentor had to slice the cells by hand under a microscope, using a glass needle.

"Cutting a single cell by hand takes about 3 minutes if you're good at it, and even if you're good at it, you can't always cut the cell equally in half. This method has not changed for over 100 years," said Blauch. "We knew that our lab's expertise in microfluidics would allow us to create a device to do that much faster."

Using the century-old cutting method, it would take a researcher five hours to cut 100 cells, and by the time they were done, the cells they cut first would be well on their way to healing. Tang's guillotine could cut 150 cells in just over 2 minutes, and the cuts were much more standardized and synchronized in the stage of their repair process. They achieved this rate by creating a scaled-up version of their tool with eight identical parallel channels that run simultaneously.

Now, Tang said, her group is ready to study how the cells heal. "From the engineering perspective, we hope to be able to extract basic principles from our studies, and apply them to engineering design to make self-healing materials and machines," she said.
-end-
Additional Stanford co-authors include Ya Gai and Jian Wei Khor. Pranidhi Sood and Wallace Marshall of the University of California, San Francisco are also co-authors. Tang is also a member of Stanford Bio-X and fellow of Stanford ChEM-H

This research was funded by the National Science Foundation, the National Institutes of Health and the American Cancer Society.

Stanford University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.