Nav: Home

A bright light in a dark room

June 26, 2018

Engineers work in quantifiable realism--an object exists and can be measured. Sometimes, though, the certainty of the object and how it will behave wavers. Researchers from the Automatic Control and System Dynamics Laboratory at the Technische Universität Chemnitz in Germany are starting to close the gap between reality and mathematical uncertainty.

They published an analysis of the discrepancy between mathematical proofs, algorithms, and their implementations in control systems with real, measurable outcomes. Their work appears in the July issue of IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the Institute of Electrical and Electronic Engineers (IEEE) and the Chinese Association of Automation (CAA).

"Control systems appear in everything from washing machines to rockets," said Pavel Osinenko, an author on the paper and a group leader with the Technische Universität Chemnitz. "Control engineers work with objects that correspond with reality. For models of real objects, we need to develop real controllers that work in the final application. Classical mathematics are good to investigate highly abstract objects, but they overshoot on control theory."

In classical mathematic theory, Osinenko said, strength is an important factor that can miss the point of control theory. Strength, in this case, refers to the specificity of the information conveyed. Some mammals are humans, and some humans are women, and some women are mothers. In classical mathematics, it's stronger to know a variable in an equation is a human mother than simply a mammal, because more information can be inferred.

"In order for control theory to work, it requires a logical background that is way weaker," Osinenko said, noting that classical mathematics requires a logical system of several steps to ensure the most specific information to stay as strong as possible. "We need a minimalistic logical system for control theory."

The researchers analyzed a hundred-year-old theorem by mathematician Constantin Carathéodory. The theorem purports that a problem with a changeable independent variable, such as the trajectory of a thrown ball, can be solved with weak logical systems.

"It's constructive mathematics--every object that you can construct or prove to exist is computable. You can input a mathematical proof one to one in your computer," Osinenko said.

That's not the case in classical mathematics where objects are often proven by assuming they don't exist until contradictory mathematics provide evidence.

Osinenko and his team explored a variant of Caratheordory's theorem that covers several problems in practice and not just in theory. It's the link between theorems and proofs and computational certainty.

"Classical mathematics says there's a black cat in a dark room. It's definitely in there, but you can't point to its precise location," Osinenko said. "This minimal logical system is the torch with which we light up the room. The cat is right there."

Osinenko and his co-authors, Grigory Devadze and Stefan Streif, plan to further investigate minimal logic systems and constructive mathematics, with a focus on automated reasoning to aid in solutions for control systems.

"There's an ocean of mathematical results and theories in control theory that still wait for their constructive treatment," Osinenko said. "The next step is for us to pick one and work it out."
-end-
Fulltext of the paper is available: http://html.rhhz.net/ieee-jas/html/2018-4-787.htm

IEEE/CAA Journal of Automatica Sinica was launched in 2014, it is a joint publication of the IEEE and the Chinese Association of Automation. JAS aims to publish high-quality, high-interest, far-reaching research achievements globally, and provide an international forum for the presentation of original ideas and recent results related to all aspects of automation.

Researchers (including globally highly cited scholars) from 164 institutes in 22 countries, such as NASA Ames Research Center, MIT, Yale University, Princeton University, and Chinese Academy of Sciences, select to share their research with a large audience through JAS. JAS has published special issues including IoT-based Smart and Complex Systems, Human-Centered Intelligent Robots, Control and Optimization in Renewable Energy Systems. More papers can be found at http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6570654 or http://www.ieee-jas.org

We are pleased to announce IEEE/CAA Journal Automatica Sinica (JAS) has its latest CiteScore as 3.18, which ranks it among top 18% (40/224) in the category of "Control and Systems Engineering", and top 19% (48/251, 32/168) both in the categories of "Information System" and "Artificial Intelligence". JAS has entered the 1st quantile (Q1) in all three categories it belongs to.

Chinese Association of Automation

Related Control Theory Articles:

New theory on how Earth's crust was created
Conventional theory holds that all of the early Earth's crustal ingredients were formed by volcanic activity.
Wanting more self-control could hinder our efforts to exert self-control, study finds
A new study shows that, ironically, wanting to have more self-control could actually be an obstacle to achieving it.
Towards a mathematical theory of PID control
A latest research gives a simple and analytic design method for the PID (proportional-integral-derivative) parameters for second order nonlinear uncertain systems, and establishes a mathematical theory for global stability and asymptotic regulation of the closed-loop control systems, which is of high value for both PID control theory and its wide practice.
Can quantum theory explain why jokes are funny?
In a recent paper published in Frontiers in Physics, researchers are taking the first steps towards of a quantum theory model of humor, to explain what really happens on the cognitive level in the moment when we 'get the joke.'
Why water splashes: New theory reveals secrets
New research from the University of Warwick generates fresh insight into how a raindrop or spilt coffee splashes.
Life origination hydrate theory
The LOH-Theory is based on the following original discoveries: highly-concentrated semi-liquid water systems saturated with functional organic substances have, at around 290 K, the so-called gas-hydrate honeycomb structure consisting of large (0.69 nm) and small (0.48 nm) cavities similar to the structure of underground methane deposits.
Study tests the 'three-hit' theory of autism
Could a genetic predisposition to autism together with early stress have a more detrimental effect on boys than on girls?
Game theory could improve cyberwarfare strategy
Whether a nation should retaliate against a cyber attack is a complicated decision, and a new framework guided by game theory could help policymakers determine the best strategy.
Quest to settle riddle over Einstein's theory may soon be over
Experiments with advanced technology could soon test an idea developed by Albert Einstein almost exactly a century ago, and settle a longstanding puzzle over what is driving the accelerated expansion of the universe.
Calculating a new theory: How to teach an old field new tricks
Fractional calculus is concerned not only with how quickly and to what extent change develops but also in what order it advances.

Related Control Theory Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".