Nav: Home

Blockade at the receptor

June 26, 2018

Chlamydia trachomatis is the main cause of sexually transmitted diseases. More than 131 million people are infected with this bacterium worldwide. If detected at an early stage and treated with antibiotics the infection with Chlamydia can be treated very well. However, infections with Chlamydia develop often without symptoms therefore in many cases remain unnoticed. This promotes the spread of the pathogen and increases the chance for further infections, e.g. with the HI virus or with Neisseria gonorrhoeae, the causative agent of gonorrhoea.

How does Chlamydia trachomatis accomplish to avoid the attack of the human immune system and thereby also to prevent the typical symptoms of an infection? An answer to this question is provided by a new study of scientist of the Julius-Maximilians-Universität Würzburg (JMU).

Dr. Karthika Rajeeve and Professor Thomas Rudel, head of the Chair of Microbiology, could show that the bacterium actively deactivates special cells of the immune system, so-called polymorphic nuclear leukocytes (PMNs) and for this reason secures its own survival. The results of their work are presented in the current issue of the journal Nature Microbiology.

Trying to catch pathogens with traps

The struggle between pathogen and immune system follows a defined process in humans: Special leukocytes which are part of the innate immune response become active following an infection. On the one hand they can take up pathogenic organisms and digest them. On the other hand they secrete special substances which damage bacteria in the surrounding. Thirdly, they form structures - called neutrophil extracellular traps which bind microorganisms and kill them. However, many pathogens have developed mechanisms in the course of evolution to destroy these traps for their part - as Chlamydia trachomatis can do.

"From previous studies it was already known that Chlamydia is disturbing single steps of the innate immune signal pathways. But the exact mechanism was unknown up to now", Thomas Rudel explains. Now the scientists of the JMU succeeded to decipher vital details of these disturbances: "We could prove that free Chlamydia even in direct interaction do not activate PMNs. As soon as PMNs attack Chlamydia these cells are paralyzed and do not react to the activation by different stimuli", Rudel says.

A protein cleaves the receptor

The researchers have identified two receptors and a special protein as main players in this battle between bacteria and immune system - the formyl peptide receptor type 1 (FPR1) and type 2 (FPR2) as well as the chlamydial protease like activating factor (CPAF). Both receptors constitute the "antennae" of the immune cells. In case they recognize a potential invader they transmit a signal to the interior of the cell and in this way initiate the immune response. Whereas FPR1 recognizes only particular peptides, FPR2 can bind broader spectrum of proteins, peptides and lipids.

Rudel and his team have now revealed how Chlamydia accomplish to prevent the activation of this process: "We have identified CPAF as the agent which blocks the innate immune response", Rudel says. In their experiments the scientists could show that Chlamydia which could not produce CPAF could be identified and efficiently killed by immune cells without problem.

Moreover, they succeeded to identify formyl peptide receptor 2 as target of CPAF. " FPR2 is cleaved by CPAF and removed from the surface of the immune cells" Rudel describes the main result of the new study. In contrast, the related FPR1 remains intact in infected cells and still mediates its signals. "However, these FPR1-signal pathways seem to be not activated in infected immune cells", Karthika Rajeeve explains.

Potential for new drugs

The fact that CPAF plays a crucial role in the process of infection outside of the cell holds the chance for new drugs against the pathogen in the view of the scientists. A substance that blocks CPAF could be an appropriate therapeutic agent against Chlamydia infections. For this, however, a deeper understanding of the strategies Chlamydia accomplish to paralyze the innate immune system of the host is necessary.
-end-


University of Würzburg

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.