Nav: Home

Texas A&M research opens doors to expanded DNA studies

June 26, 2018

Dr. Wonmuk Hwang, associate professor in the Department of Biomedical Engineering at Texas A&M University, is researching the mechanics of DNA, the blueprint of the human body.

Hwang and his former doctoral student, Dr. Xiaojing Teng, zoomed into the question: if the genetic information is the same in all cells, as it should be, why do muscle cells look and act differently than skin cells?

"To selectively turn on and off different genes to determine the cell type, you need to modify this gene expression, and one way to do that is to chemically modify DNA," Hwang said.

A major way the body achieves this is through methylation, where methyl groups stick to a particular location in DNA, so that the group blocks the genetic information in this region from being read by the cell. In addition, methylation affects local flexibility of DNA, which in turn controls how DNAs are packaged into chromosomes. While these processes were generally known, how methylation affects DNA's mechanical properties has remained unknown.

Through extensive simulations using supercomputers at the Texas A&M High Performance Research Computing Facility, as well as the Texas Advanced Computing Center at The University of Texas at Austin, Hwang was able to determine how the areas of DNA around the methyl groups bump against each other and alter mechanical behaviors.

Along with that discovery, Hwang said they found another unexpected insight.

"These methyl groups not only bump against neighboring atoms in DNA, but water molecules rearrange around these methyl groups," Hwang said. "The rearranged water molecules actually resist deformation even in the absence of the direct collision of atoms with the methyl groups, as if the surrounding water molecules are a part of DNA itself."

There are multiple applications to understanding how processes such as methylation work. One example Hwang gave was developing more knowledge on how cancer cells function.

"Cancer cells often methylate their DNA to turn off genes that control cell division, promoting uncontrolled growth," he said.

Another is drug interaction with DNA and how drug design should take these water molecules into account.

"This study won't immediately lead to a new drug, but it provides one more step toward more rational drug design," Hwang said. "People have been working on cancer for decades, and I don't claim that I can solve the problem right away. But all of these efforts make step-by-step progress in the right direction."

Hwang said the method developed by his team opens the door to analyzing other types of DNA or RNA modifications and how their behavior changes depending on what drugs are introduced.
-end-
The article was featured on the cover of the April 24 issue of Biophysical Journal, which is a premier scientific journal in quantitative biology published by the Cell Press.

Texas A&M University

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.